Asymptotically minimax estimation of a function with jumps

Asymptotically minimax nonparametric estimation of a regression function observed in white Gaussian noise over a bounded interval is considered, with respect to a L2-loss function. The unknown function f is assumed to be m times differentiable except for an unknown although finite number of jumps, with piecewise mth derivative bounded in L2 norm. An estimator is constructed, attaining the same optimal risk bound, known as Pinsker's constant, as in the case of smooth functions (without jumps).

[1]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[2]  M. Nussbaum Spline Smoothing in Regression Models and Asymptotic Efficiency in $L_2$ , 1985 .

[3]  P. Speckman Spline Smoothing and Optimal Rates of Convergence in Nonparametric Regression Models , 1985 .

[4]  A. Korostelev An Asymptotically Minimax Regression Estimator in the Uniform Norm up to Exact Constant , 1994 .

[5]  Sam Efromovich,et al.  On nonparametric regression for IID observations in a general setting , 1996 .

[6]  H. R. Dowson,et al.  LINEAR OPERATORS PART III: SPECTRAL OPERATORS , 1974 .

[7]  Lucien Birgé Approximation dans les espaces métriques et théorie de l'estimation , 1983 .

[8]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[9]  M. Nussbaum,et al.  A Risk Bound in Sobolev Class Regression , 1990 .

[10]  Yazhen Wang Jump and sharp cusp detection by wavelets , 1995 .

[11]  B. Levit,et al.  Asymptotically efficient estimation of analytic functions in Gaussian noise , 1996 .

[12]  H. Müller CHANGE-POINTS IN NONPARAMETRIC REGRESSION ANALYSIS' , 1992 .

[13]  L. Brown,et al.  Asymptotic equivalence of nonparametric regression and white noise , 1996 .

[14]  Peter Hall,et al.  Formulae for Mean Integrated Squared Error of Nonlinear Wavelet-Based Density Estimators , 1995 .

[15]  A. Korostelev On Minimax Estimation of a Discontinuous Signal , 1988 .

[16]  B. Levit,et al.  Asymptotically Minimax Nonparametric Regression in L2 , 1996 .

[17]  D. Donoho Asymptotic minimax risk for sup-norm loss: Solution via optimal recovery , 1994 .

[18]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .