Positron follow-up in liquid water: I. A new Monte Carlo track-structure code

When biological matter is irradiated by charged particles, a wide variety of interactions occur, which lead to a deep modification of the cellular environment. To understand the fine structure of the microscopic distribution of energy deposits, Monte Carlo event-by-event simulations are particularly suitable. However, the development of these track-structure codes needs accurate interaction cross sections for all the electronic processes: ionization, excitation, positronium formation and even elastic scattering. Under these conditions, we have recently developed a Monte Carlo code for positrons in water, the latter being commonly used to simulate the biological medium. All the processes are studied in detail via theoretical differential and total cross-section calculations performed by using partial wave methods. Comparisons with existing theoretical and experimental data in terms of stopping powers, mean energy transfers and ranges show very good agreements. Moreover, thanks to the theoretical description of positronium formation, we have access, for the first time, to the complete kinematics of the electron capture process. Then, the present Monte Carlo code is able to describe the detailed positronium history, which will provide useful information for medical imaging (like positron emission tomography) where improvements are needed to define with the best accuracy the tumoural volumes.

[1]  P. Hervieux,et al.  Positronium formation in collisions of fast positrons impacting on vapour water molecules , 2006 .

[2]  C. Surko,et al.  Low-energy positron interactions with atoms and molecules , 2005 .

[3]  C. Champion,et al.  A Monte Carlo Code for the Simulation of Heavy-Ion Tracks in Water , 2005, Radiation research.

[4]  Aleksander Jablonski,et al.  ELSEPA - Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules , 2005, Comput. Phys. Commun..

[5]  D. Visvikis,et al.  GATE: a simulation toolkit for PET and SPECT , 2004, Physics in medicine and biology.

[6]  C. Champion,et al.  Theoretical cross sections for electron collisions in water: structure of electron tracks , 2003, Physics in medicine and biology.

[7]  K. Karava,et al.  Monte Carlo simulation of the energy loss of low-energy electrons in liquid water. , 2003, Physics in medicine and biology.

[8]  F. Salvat,et al.  Distorted-wave calculation of cross sections for inner-shell ionization by electron and positron impact , 2003 .

[9]  A. C. F. Santos,et al.  Doubly differential measurements for multiple ionization of argon by electron impact: Comparison with positron impact and photoionization , 2003 .

[10]  H. Stoll,et al.  Positron age-momentum correlation (AMOC) measurements on organic liquids , 2002 .

[11]  J. Jay-Gerin,et al.  Low-Energy Electron Penetration Range in Liquid Water , 2002, Radiation research.

[12]  G. Laricchia,et al.  Empirical scaling of positron- and electron-impact ionization cross sections , 2002 .

[13]  L. Siebbeles,et al.  Energy loss by non-relativistic electrons and positrons in liquid water , 2002 .

[14]  P. Hervieux,et al.  Electron impact ionization of water molecule , 2002 .

[15]  G. Laricchia,et al.  Total positron-impact ionization and positronium formation from the noble gases , 2002 .

[16]  P. G. Coleman,et al.  Positron beams: The journey from fundamental physics to industrial application , 2002 .

[17]  P. Hervieux,et al.  Theoretical differential and total cross sections of water-molecule ionization by electron impact , 2002 .

[18]  D. Kilbane,et al.  4f collapse, level density inflation and the emergence of 'compound-like' atomic states in rare earth ions , 2002 .

[19]  R. Campeanu,et al.  On the Distorted Wave Models in Positron Impact Ionization of Atoms , 2002 .

[20]  S. Pimblott,et al.  Radiation track structure simulation in a molecular medium , 2001 .

[21]  C. P. Burrows,et al.  Development of a novel tool for semiconductor process control , 2001 .

[22]  Yong-ki Kim,et al.  Extension of the binary-encounter-dipole model to relativistic incident electrons , 2000 .

[23]  M. Kimura,et al.  Total and positronium formation cross-sections in polyatomic molecules , 2000 .

[24]  J. Merrison,et al.  Ionization of helium, neon and xenon by positron impact , 1999 .

[25]  D. Goodhead,et al.  Comparison and assessment of electron cross sections for Monte Carlo track structure codes. , 1999, Radiation research.

[26]  E. Hoffman,et al.  Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. , 1999, Physics in medicine and biology.

[27]  M. Lubberink,et al.  Positron emission tomography , 1998 .

[28]  R. J. Drachman A GENERAL OVERVIEW OF POSITRON COLLISION PHYSICS , 1998 .

[29]  H. Walters,et al.  POSITRON COLLISIONS WITH ONE- AND TWO-ELECTRON ATOMS , 1998 .

[30]  D T Goodhead,et al.  Track structure in radiation biology: theory and applications. , 1998, International journal of radiation biology.

[31]  G. Laricchia,et al.  Single and double ionization of neon, krypton and xenon by positron impact , 1997 .

[32]  E. Morenzoni,et al.  LETTER TO THE EDITOR: Ionization of rare gases by particle - antiparticle impact , 1997 .

[33]  J. Baró,et al.  PENELOPE: An algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter , 1995 .

[34]  H. Kaneko,et al.  Development of a new Monte Carlo simulation system on positron behavior in matter , 1995 .

[35]  Rudd,et al.  Binary-encounter-dipole model for electron-impact ionization. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[36]  O. Sueoka,et al.  Excitation and ionization cross sections of He, Ne and Ar by positron impact , 1994 .

[37]  O. Sueoka,et al.  Total cross section measurements for positrons and electrons colliding with molecules. I: SiH4 and CF4 , 1994 .

[38]  H. Paretzke,et al.  Track Structure Approaches to the Interpretation of Radiation Effects on DNA , 1994 .

[39]  H. Paretzke,et al.  Comparison of Energy Deposition in Small Cylindrical Volumes by Electrons Generated by Monte Carlo Track Structure Codes for Gaseous and Liquid Water , 1994 .

[40]  Crescimanno Towards a semiclassical seismology of black holes. , 1993, Physical review. D, Particles and fields.

[41]  Jain,et al.  Total (elastic and inelastic) scattering cross sections for several positron-molecule systems at 10-5000 eV: H2, H2O, NH3, CH4, N2, CO, C2H2, O2, SiH4, CO2, N2O, and CF4. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[42]  R. H. Ritchie,et al.  Spatial distributions of inelastic events produced by electrons in gaseous and liquid water. , 1991, Radiation research.

[43]  H. Sunaga,et al.  Design of an intense slow positron beam production system using a 100 kW electron linac for the Positron Factory , 1991 .

[44]  M. Charlton,et al.  Single ionization of H2, He, Ne and Ar by positron impact , 1990 .

[45]  K. Lynn,et al.  Interaction of positron beams with surfaces, thin films, and interfaces , 1988 .

[46]  E. Krishnakumar,et al.  Ionisation cross sections of rare-gas atoms by electron impact , 1988 .

[47]  Y. Katayama,et al.  Total cross sections for positron and electron collisions with NH3 and H2O molecules , 1987 .

[48]  T. Sakae,et al.  Elastic scattering of electrons by water molecules over the range 100-1000 eV , 1986 .

[49]  Y. Katayama,et al.  Total cross sections for electrons and positrons colliding with H2O molecules , 1986 .

[50]  H. Nishimura,et al.  Elastic Scattering of Electrons from H2O Molecule , 1985 .

[51]  A. Einstein On the Quantum Theory of Radiation , 1983 .

[52]  R. H. Ritchie,et al.  Comparative Study of Electron Energy Deposition and Yields in Water in the Liquid and Vapor Phases , 1982 .

[53]  W. E. Wilson,et al.  Calculation of Distributions for Energy Imparted and Ionization by Fast Protons in Nanometer Sites , 1981 .

[54]  A. Weiss,et al.  Low-Energy Positron Diffraction from a Cu(111) Surface , 1980 .

[55]  V. Schmidt,et al.  Absolute ionisation cross sections for electron impact in rare gases , 1980 .

[56]  F. J. Heer,et al.  Total cross sections for electron scattering by Ne, Ar, Kr and Xe , 1979 .

[57]  A. Kuppermann,et al.  Electron impact excitation of H2O , 1973 .

[58]  Anomalous parapositronium lifetime in water at 20 degrees C , 1972 .

[59]  L. Christophorou,et al.  Negative-Ion Formation in H_{2}O and D_{2}O , 1967 .

[60]  R. Moccia One‐Center Basis Set SCF MO's. III. H2O, H2S, and HCl , 1964 .

[61]  P. Dirac On the Annihilation of Electrons and Protons , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.