Observing structure, function and assembly of single proteins by AFM.

Single molecule experiments provide insight into the individuality of biological macromolecules, their unique function, reaction pathways, trajectories and molecular interactions. The exceptional signal-to-noise ratio of the atomic force microscope allows individual proteins to be imaged under physiologically relevant conditions at a lateral resolution of 0.5-1nm and a vertical resolution of 0.1-0.2nm. Recently, it has become possible to observe single molecule events using this technique. This capability is reviewed on various water-soluble and membrane proteins. Examples of the observation of function, variability, and assembly of single proteins are discussed. Statistical analysis is important to extend conclusions derived from single molecule experiments to protein species. Such approaches allow the classification of protein conformations and movements. Recent developments of probe microscopy techniques allow simultaneous measurement of multiple signals on individual macromolecules, and greatly extend the range of experiments possible for probing biological systems at the molecular level. Biologists exploring molecular mechanisms will benefit from a burgeoning of scanning probe microscopes and of their future combination with molecular biological experiments.

[1]  A. Engel,et al.  Adsorption of biological molecules to a solid support for scanning probe microscopy. , 1997, Journal of structural biology.

[2]  H. Butt,et al.  Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. , 1991, Biophysical journal.

[3]  G. Goldberg,et al.  Properties and regulation of gap junctional hemichannels in the plasma membranes of cultured cells , 1996, The Journal of cell biology.

[4]  R. Lal,et al.  Atomic force microscopy and dissection of gap junctions , 1991, Science.

[5]  H. Nikaido Outer membrane barrier as a mechanism of antimicrobial resistance , 1989, Antimicrobial Agents and Chemotherapy.

[6]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[7]  H. Butt,et al.  Measuring surface forces in aqueous electrolyte solution with the atomic force microscope , 1995 .

[8]  E. Henderson,et al.  Imaging and nanodissection of individual supercoiled plasmids by atomic force microscopy. , 1992, Nucleic acids research.

[9]  R Henderson,et al.  The structure of bacteriorhodopsin and its relevance to the visual opsins and other seven-helix G-protein coupled receptors. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[10]  H. Stahlberg,et al.  Bacterial Na+‐ATP synthase has an undecameric rotor , 2001, EMBO reports.

[11]  G E Sosinsky,et al.  Structure of the extracellular surface of the gap junction by atomic force microscopy. , 1993, Biophysical journal.

[12]  Gus Gurley,et al.  A new, optical‐lever based atomic force microscope , 1994 .

[13]  A. Engel,et al.  Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. , 1999, Biophysical journal.

[14]  D. Oesterhelt,et al.  Light‐dependent reaction of bacteriorhodopsin with hydroxylamine in cell suspensions of Halobacterium halobium: Demonstration of an APO‐membrane , 1974, FEBS letters.

[15]  A G Leslie,et al.  Molecular architecture of the rotary motor in ATP synthase. , 1999, Science.

[16]  G Büldt,et al.  Charting the surfaces of the purple membrane. , 1999, Journal of structural biology.

[17]  H. Nikaido,et al.  Molecular basis of bacterial outer membrane permeability. , 1985, Microbiological reviews.

[18]  A. Engel,et al.  Isolation and characterization of gap junctions from tissue culture cells. , 2002, Journal of molecular biology.

[19]  J. Hoh,et al.  Relative surface charge density mapping with the atomic force microscope. , 1999, Biophysical journal.

[20]  Z. Shao,et al.  New approach for atomic force microscopy of membrane proteins. The imaging of cholera toxin. , 1993, Journal of molecular biology.

[21]  Shimon Weiss,et al.  Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy , 2000, Nature Structural Biology.

[22]  M. Borgnia,et al.  Highly selective water channel activity measured by voltage clamp: Analysis of planar lipid bilayers reconstituted with purified AqpZ , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  K. Janáček,et al.  Cell Membrane Transport , 1975, Springer US.

[24]  M. Borgnia,et al.  Cellular and molecular biology of the aquaporin water channels. , 1999, Annual review of biochemistry.

[25]  H. B. Wood,et al.  Biophysical and molecular properties of annexin-formed channels. , 2000, Progress in biophysics and molecular biology.

[26]  D. Pum,et al.  Crystalline bacterial cell surface layers , 1993, Molecular microbiology.

[27]  G Büldt,et al.  Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. , 1999, Journal of molecular biology.

[28]  W. Junge,et al.  ATP synthase: a tentative structural model , 1997, FEBS letters.

[29]  A. Engel,et al.  Surface tongue-and-groove contours on lens MIP facilitate cell-to-cell adherence. , 2000, Journal of molecular biology.

[30]  M. Girvin,et al.  Structural changes linked to proton translocation by subunit c of the ATP synthase , 1999, Nature.

[31]  A. Oberhauser,et al.  The study of protein mechanics with the atomic force microscope. , 1999, Trends in biochemical sciences.

[32]  S. Scheuring,et al.  High‐resolution AFM topographs of Rubrivivax gelatinosus light‐harvesting complex LH2 , 2001, The EMBO journal.

[33]  Andreas Engel,et al.  Aquaporins: Phylogeny, Structure, and Physiology of Water Channels. , 1999, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[34]  A. Engel,et al.  Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope , 1999, Journal of microscopy.

[35]  Tilman Schirmer General and specific porins from bacterial outer membranes. , 1998, Journal of structural biology.

[36]  P. Pohl,et al.  Water and Ion Permeation of Aquaporin-1 in Planar Lipid Bilayers , 2001, The Journal of Biological Chemistry.

[37]  D. Czajkowsky,et al.  VacA from Helicobacter pylori: a hexameric chloride channel , 1999, FEBS letters.

[38]  J B Heymann,et al.  Structural clues in the sequences of the aquaporins. , 2000, Journal of molecular biology.

[39]  Paul R. Selvin,et al.  The renaissance of fluorescence resonance energy transfer , 2000, Nature Structural Biology.

[40]  H. Stahlberg,et al.  ATP synthase: constrained stoichiometry of the transmembrane rotor , 2001, FEBS letters.

[41]  C Menzel,et al.  Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. , 1999, Structure.

[42]  A. Delcour,et al.  Cadaverine induces closing of E. coli porins. , 1995, The EMBO journal.

[43]  Charles M. Lieber,et al.  Structural and functional imaging with carbon nanotube AFM probes. , 2001, Progress in biophysics and molecular biology.

[44]  R Henderson,et al.  Electron-crystallographic refinement of the structure of bacteriorhodopsin. , 1996, Journal of molecular biology.

[45]  Richard M. Pashley,et al.  Direct measurement of colloidal forces using an atomic force microscope , 1991, Nature.

[46]  A. Engel,et al.  Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. , 1999, Journal of molecular biology.

[47]  A. Pfahnl,et al.  Gating of cx46 gap junction hemichannels by calcium and voltage , 1999, Pflügers Archiv.

[48]  H. Gaub,et al.  Molecular Organization of Surfactants at Solid-Liquid Interfaces , 1995, Science.

[49]  R. H. Fillingame,et al.  Genetic fusions of subunit c in the F0 sector of H+-transporting ATP synthase. Functional dimers and trimers and determination of stoichiometry by cross-linking analysis. , 1998, The Journal of biological chemistry.

[50]  D. Oesterhelt,et al.  Closing in on bacteriorhodopsin: progress in understanding the molecule. , 1999, Annual review of biophysics and biomolecular structure.

[51]  C. Rotsch,et al.  Mapping Local Electrostatic Forces with the Atomic Force Microscope , 1997 .

[52]  U. Sleytr,et al.  I. Basic and applied S-layer research: an overview , 1997 .

[53]  H. Gaub,et al.  Unfolding forces of titin and fibronectin domains directly measured by AFM. , 2000, Advances in experimental medicine and biology.

[54]  D. Oesterhelt,et al.  The structure and mechanism of the family of retinal proteins from halophilic archaea. , 1998, Current opinion in structural biology.

[55]  J B Heymann,et al.  2D crystallization of membrane proteins: rationales and examples. , 1998, Journal of structural biology.

[56]  A. Engel,et al.  Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. , 1999, Biophysical journal.

[57]  Helbert,et al.  High-Resolution Atomic Force Microscopy of Native Valonia Cellulose I Microcrystals , 1997, Journal of structural biology.

[58]  Javier Tamayo,et al.  Active quality factor control in liquids for force spectroscopy , 2000 .

[59]  A G Leslie,et al.  The rotary mechanism of ATP synthase. , 2000, Current opinion in structural biology.

[60]  M Kamermans,et al.  Hemichannel-Mediated Inhibition in the Outer Retina , 2001, Science.

[61]  N. Saint,et al.  Structural and Functional Characterization of OmpF Porin Mutants Selected for Larger Pore Size , 1996, The Journal of Biological Chemistry.

[62]  D. Czajkowsky,et al.  The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  A. Delcour Function and modulation of bacterial porins: insights from electrophysiology. , 1997, FEMS microbiology letters.

[64]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[65]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[66]  Wolfgang Baumeister,et al.  The Proteasome: Paradigm of a Self-Compartmentalizing Protease , 1998, Cell.

[67]  M. Blaser,et al.  Purification and characterization of the vacuolating toxin from Helicobacter pylori. , 1992, The Journal of biological chemistry.

[68]  W. Baumeister,et al.  Can S-layers make bacterial connexons? , 1986 .

[69]  W. Rocque,et al.  Effects of pH on bacterial porin function. , 1992, Biochemistry.

[70]  J. Tommassen,et al.  Porins of Escherichia coli: unidirectional gating by pressure. , 1996, The EMBO journal.

[71]  W. Baumeister,et al.  Projected structure of the surface protein of deinococcus radiodurans determined to 8 Å resolution by cryomicroscopy , 1986 .

[72]  A. Engel,et al.  Projection map of aquaporin-1 determined by electron crystallography , 1995, Nature Structural Biology.

[73]  C F Quate,et al.  Imaging crystals, polymers, and processes in water with the atomic force microscope. , 1989, Science.

[74]  P. Klebba,et al.  Mechanisms of solute transport through outer membrane porins: burning down the house. , 1998, Current opinion in microbiology.

[75]  K. Hofmann,et al.  Structure and function of proteins in G-protein-coupled signal transfer. , 1996, Biochimica et biophysica acta.

[76]  H Luecke,et al.  Structure of bacteriorhodopsin at 1.55 A resolution. , 1999, Journal of molecular biology.

[77]  E A Merritt,et al.  The 1.25 A resolution refinement of the cholera toxin B-pentamer: evidence of peptide backbone strain at the receptor-binding site. , 1998, Journal of molecular biology.

[78]  H. Butt,et al.  Electrostatic interaction in atomic force microscopy. , 1991, Biophysical journal.

[79]  T. Ando,et al.  A high-speed atomic force microscope for studying biological macromolecules , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[80]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[81]  C. Kushmerick,et al.  The Role of MIP in Lens Fiber Cell Membrane Transport , 1999, The Journal of Membrane Biology.

[82]  R. Henderson,et al.  Orthorhombic two-dimensional crystal form of purple membrane. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[83]  E. Bamberg,et al.  Light-driven proton or chloride pumping by halorhodopsin. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[84]  Z. Shao,et al.  Chaperonins GroEL and GroES: views from atomic force microscopy. , 1996, Biophysical journal.

[85]  K Lieberman,et al.  Near-field scanning optical microscopy in cell biology. , 1999, Trends in cell biology.

[86]  Charles M. Lieber,et al.  Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[87]  D. Oesterhelt,et al.  Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. , 2000, Science.

[88]  A. Plückthun,et al.  Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins. , 1998, Biophysical journal.

[89]  G. Groth,et al.  Model of the c‐subunit oligomer in the membrane domain of F‐ATPases , 1997, FEBS letters.

[90]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[91]  S J Ferguson,et al.  ATP synthase: What dictates the size of a ring? , 2000, Current Biology.

[92]  Marc C. Morais,et al.  Structure of the bacteriophage φ29 DNA packaging motor , 2000, Nature.

[93]  J. Cassim,et al.  Effects of bleaching and regeneration on the purple membrane structure of Halobaterium halobium. , 1977, Biophysical journal.

[94]  W Baumeister,et al.  Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy , 1996, Journal of bacteriology.

[95]  Daniel J Müller,et al.  Imaging and manipulation of biological structures with the AFM. , 2002, Micron.

[96]  H. Butt,et al.  Measuring local surface charge densities in electrolyte solutions with a scanning force microscope. , 1992, Biophysical journal.

[97]  Ami Chand,et al.  Probing protein–protein interactions in real time , 2000, Nature Structural Biology.

[98]  J. Rosenbusch,et al.  Matrix protein in planar membranes: clusters of channels in a native environment and their functional reassembly. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Z. Shao,et al.  Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. , 1995, Journal of molecular biology.

[100]  M. Y. Leitane Intermolecular surface forces of adsorptive interaction in a plane densely packed hexagonal model , 1979 .

[101]  J. Adler,et al.  Membrane‐derived oligosaccharides (MDO's) promote closing of an E. coli porin channel , 1992, FEBS letters.

[102]  J. Sugiyama,et al.  New insight into cellulose structure by atomic force microscopy shows the i(alpha) crystal phase at near-atomic resolution. , 2000, Biophysical journal.

[103]  N. Govorukhina,et al.  Surface topography of the p3 and p6 annexin V crystal forms determined by atomic force microscopy. , 2000, Journal of structural biology.

[104]  G. Schulz,et al.  Molecular architecture and electrostatic properties of a bacterial porin. , 1991, Science.

[105]  Akinori Kidera,et al.  Surface of bacteriorhodopsin revealed by high-resolution electron crystallography , 1997, Nature.

[106]  P. Tittmann,et al.  Surface analysis of the photosystem I complex by electron and atomic force microscopy. , 1998, Journal of molecular biology.

[107]  R. Tampé,et al.  High-resolution AFM-imaging and mechanistic analysis of the 20 S proteasome. , 1999, Journal of molecular biology.

[108]  M. Saier,et al.  Transport proteins in bacteria: common themes in their design. , 1992, Science.

[109]  P. Bauer,et al.  Evidence for chromophore-chromophore interactions in the Purple Membrane from reconstitution experiments of the chromophore-free membrane , 1976, Biophysics of structure and mechanism.

[110]  W. Lehmann,et al.  Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin-lipid complex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[111]  H. Steinhoff,et al.  Site-directed spin-labeling reveals the orientation of the amino acid side-chains in the E-F loop of bacteriorhodopsin. , 1999, Journal of molecular biology.

[112]  S. Lindsay,et al.  A magnetically driven oscillating probe microscope for operation in liquids , 1996 .

[113]  P. Tittmann,et al.  Surface topographies at subnanometer-resolution reveal asymmetry and sidedness of aquaporin-1. , 1996, Journal of molecular biology.

[114]  W. Baumeister,et al.  Nucleotide sequence analysis of the gene encoding the Deinococcus radiodurans surface protein, derived amino acid sequence, and complementary protein chemical studies , 1987, Journal of bacteriology.

[115]  B. Hille Ionic channels of excitable membranes , 2001 .

[116]  Robert H. Fillingame,et al.  Genetic Fusions of Subunit c in the F0Sector of H+-transporting ATP Synthase , 1998, The Journal of Biological Chemistry.

[117]  W Baumeister,et al.  Bacterial surface proteins. Some structural, functional and evolutionary aspects. , 1988, Biophysical chemistry.

[118]  C. Bustamante,et al.  Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. , 1992, Ultramicroscopy.

[119]  A. Meixner,et al.  Scanning near-field optical microscopy in cell biology and microbiology. , 1998, Cellular and molecular biology.

[120]  D. Pohl,et al.  Scanning near-field optical microscopy , 1994 .

[121]  W. O. Saxton,et al.  Mass mapping of a protein complex with the scanning transmission electron microscope. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[122]  W. Bishai,et al.  Regulation of the Escherichia coli water channel gene aqpZ. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[123]  C. Siegerist,et al.  Reproducible Imaging and Dissection of Plasmid DNA Under Liquid with the Atomic Force Microscope , 1992, Science.

[124]  Ansgar Philippsen,et al.  Imaging the electrostatic potential of transmembrane channels: atomic probe microscopy of OmpF porin. , 2002, Biophysical journal.

[125]  Javier Tamayo,et al.  Piconewton regime dynamic force microscopy in liquid , 2000 .

[126]  G Büldt,et al.  Immuno-atomic force microscopy of purple membrane. , 1996, Biophysical journal.

[127]  Z. Shao,et al.  High resolution surface structure of E. coli GroES oligomer by atomic force microscopy , 1996, FEBS letters.

[128]  A. Engel,et al.  The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. , 1997, Biophysical journal.

[129]  N. J. Dinardo using Scanning Probe Microscopy , 2001 .

[130]  Henning Stahlberg,et al.  Structural biology: Proton-powered turbine of a plant motor , 2000, Nature.

[131]  J B Heymann,et al.  Conformations of the rhodopsin third cytoplasmic loop grafted onto bacteriorhodopsin. , 2000, Structure.

[132]  Paul K. Hansma,et al.  Tapping mode atomic force microscopy in liquids , 1994 .

[133]  P. Agre,et al.  Aquaporin CHIP: the archetypal molecular water channel. , 1993, The American journal of physiology.

[134]  R. Capaldi,et al.  Electron microscopic evidence of two stalks linking the F1 and F0 parts of the Escherichia coli ATP synthase. , 1998, Biochimica et biophysica acta.

[135]  J. Rosenbusch,et al.  Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[136]  Piotr E. Marszalek,et al.  Stretching single molecules into novel conformations using the atomic force microscope , 2000, Nature Structural Biology.

[137]  A. Fedorov,et al.  GroE modulates kinetic partitioning of folding intermediates between alternative states to maximize the yield of biologically active protein. , 1997, Journal of molecular biology.

[138]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[139]  Z. Shao,et al.  Images of oligomeric Kvβ2, a modulatory subunit of potassium channels , 1999 .

[140]  R. Henderson,et al.  Structure of bacteriorhodopsin , 1984 .

[141]  H. Lilie,et al.  Interaction of GroEL with a highly structured folding intermediate: iterative binding cycles do not involve unfolding. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[142]  D. Pum,et al.  Crystalline Bacterial Cell Surface Layers , 1988, Springer Berlin Heidelberg.

[143]  A. Engel,et al.  High resolution imaging of native biological sample surfaces using scanning probe microscopy. , 1997, Current opinion in structural biology.

[144]  H. Gaub,et al.  Force spectroscopy with single bio-molecules. , 2000, Current opinion in chemical biology.

[145]  Dieter Oesterhelt,et al.  Stability of Bacteriorhodopsin α-Helices and Loops Analyzed by Single-Molecule Force Spectroscopy , 2002 .

[146]  G Büldt,et al.  Reversible loss of crystallinity on photobleaching purple membrane in the presence of hydroxylamine. , 2000, Journal of molecular biology.

[147]  P. Hargrave Seven-helix receptors , 1991 .

[148]  R Henderson,et al.  The three-dimensional structure of halorhodopsin to 5 A by electron crystallography: A new unbending procedure for two-dimensional crystals by using a global reference structure. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[149]  G Büldt,et al.  Force-induced conformational change of bacteriorhodopsin. , 1995, Journal of molecular biology.

[150]  P. Phale,et al.  Brownian dynamics simulation of ion flow through porin channels. , 1999, Journal of molecular biology.

[151]  J. Lakey Voltage gating in porin channels , 1987, FEBS letters.

[152]  J. Revel,et al.  The major intrinsic protein (MIP) of the bovine lens fiber membrane: Characterization and structure based on cDNA cloning , 1984, Cell.

[153]  Z. Shao,et al.  Direct visualization of surface charge in aqueous solution. , 1998, Ultramicroscopy.

[154]  Jan Greve,et al.  New imaging mode in atomic-force microscopy based on the error signal , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[155]  A. Engel,et al.  The bacteriophage φ29 head–tail connector imaged at high resolution with the atomic force microscope in buffer solution , 1997, The EMBO journal.

[156]  Jan Greve,et al.  Tapping mode atomic force microscopy in liquid , 1994 .

[157]  P. Tittmann,et al.  Purified lens major intrinsic protein (MIP) forms highly ordered tetragonal two-dimensional arrays by reconstitution. , 1998, Journal of molecular biology.

[158]  Z. Shao,et al.  Staphylococcal alpha-hemolysin can form hexamers in phospholipid bilayers. , 1998, Journal of molecular biology.

[159]  Daniel J. Müller,et al.  Observing single biomolecules at work with the atomic force microscope , 2000, Nature Structural Biology.

[160]  M. Radmacher,et al.  Direct observation of different surface structures on high-resolution images of native halorhodopsin. , 2001, Journal of molecular biology.

[161]  W. O. Saxton,et al.  Three-dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. , 1986, Journal of molecular biology.

[162]  M. Viani,et al.  Small cantilevers for force spectroscopy of single molecules , 1999 .

[163]  Brisson,et al.  Growth of Protein 2-D Crystals on Supported Planar Lipid Bilayers Imaged in Situ by AFM. , 1998, Journal of structural biology.

[164]  H Luecke,et al.  Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. , 1998, Science.

[165]  J. Baldwin The probable arrangement of the helices in G protein‐coupled receptors. , 1993, The EMBO journal.

[166]  G. Rummel,et al.  Crystal structures explain functional properties of two E. coli porins , 1992, Nature.

[167]  H. Gaub,et al.  A metal-chelating microscopy tip as a new toolbox for single-molecule experiments by atomic force microscopy. , 2000, Biophysical journal.

[168]  E. Pebay-Peyroula,et al.  X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. , 1997, Science.

[169]  H. Gaub,et al.  Unfolding pathways of individual bacteriorhodopsins. , 2000, Science.

[170]  M. Borgnia,et al.  High resolution AFM topographs of the Escherichia coli water channel aquaporin Z , 1999, The EMBO journal.

[171]  A. Kidera,et al.  The structure of bacteriorhodopsin at 3.0 A resolution based on electron crystallography: implication of the charge distribution. , 1999, Journal of molecular biology.