Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

D Andrews | R A Knight | G Melino | A Ciechanover | A. Ciechanover | Nektarios Tavernarakis | E. Wagner | C. Borner | D. Andrews | D. Green | K. Blomgren | E. Alnemri | T. Vanden Berghe | P. Vandenabeele | B. Stockwell | M. Peter | C. López-Otín | E. Cheng | B. Joseph | E. White | L. Galluzzi | O. Kepp | G. Kroemer | R. Knight | G. Melino | M. Hengartner | G. Rabinovich | P. Jost | L. Altucci | I. Vitale | B. Zhivotovsky | H. Gronemeyer | S. Fulda | D. Bredesen | A. Oberst | T. Dawson | V. Dawson | F. Cecconi | J. Penninger | V. Dixit | J. Martinou | B. Dynlacht | N. Chandel | S. Aaronson | U. Moll | E. Candi | J. Abrams | V. de Laurenzi | J. M. Bravo-San Pedro | E. Baehrecke | M. Annicchiarico-Petruzzelli | M. Blagosklonny | J. Chipuk | T. Rudel | P. Pinton | G. Hajnóczky | R. Rizzuto | C. Garrido | J. Medema | Y. Tsujimoto | S. Tait | K. Ravichandran | H. Ichijo | S. Martin | H. Puthalakath | T. Kaufmann | A. Villunger | N. Bazan | M. Piacentini | K. Debatin | R. Lockshin | J. Prehn | N. Mizushima | F. Madeo | C. Rodrigues | S. Melino | W. Malorni | B. Levine | C. Brenner | P. Meier | Z. Zakeri | G. Szabadkai | N. Di Daniele | D. Adam | E. Lugli | J. Lemasters | H. Walczak | A. Linkermann | K. Bianchi | M. Campanella | F. K. Chan | R. De Maria | J. Hardwick | C. Muñoz-Pinedo | G. Núñez | G. Fimia | N G Bazan | V M Dixit | L Galluzzi | S A Aaronson | E S Alnemri | E H Baehrecke | M V Blagosklonny | K Blomgren | C Borner | D E Bredesen | C Brenner | J A Cidlowski | B D Dynlacht | R A Flavell | S Fulda | C Garrido | M-L Gougeon | D R Green | H Gronemeyer | J M Hardwick | M O Hengartner | H Ichijo | O Kepp | D J Klionsky | B Levine | S A Lipton | E Lugli | F Madeo | W Malorni | S J Martin | J P Medema | G Nuñez | M E Peter | M Piacentini | H Puthalakath | G A Rabinovich | R Rizzuto | D C Rubinsztein | T Rudel | H-U Simon | Y Tsujimoto | P Vandenabeele | I Vitale | J Yuan | B Zhivotovsky | G Kroemer | B Joseph | S. Kumar | M. Gougeon | F Cecconi | G M Fimia | A Villunger | E F Wagner | J J Lemasters | V De Laurenzi | S. Lipton | J. Yuan | T Panaretakis | N Mizushima | D. Rubinsztein | M. Bertrand | J. Cidlowski | W. el-Deiry | R. Flavell | D. Klionsky | Jeremy Marine | T. Panaretakis | Y. Shi | H-U Simon | H. Tang | W. G. Wood | N Tavernarakis | R De Maria | P Pinton | T M Dawson | U Moll | B R Stockwell | J M Penninger | V L Dawson | E White | N S Chandel | H Walczak | R A Lockshin | J M Abrams | G Szabadkai | K-M Debatin | J E Chipuk | L Altucci | N Di Daniele | Y Shi | J M Bravo-San Pedro | D Adam | M Annicchiarico-Petruzzelli | M J Bertrand | K Bianchi | M Campanella | E Candi | F K Chan | E H Cheng | W S El-Deiry | G Hajnoczky | P J Jost | T Kaufmann | S Kumar | A Linkermann | C López-Otín | J-C Marine | J-C Martinou | P Meier | S Melino | C Muñoz-Pinedo | A Oberst | J H Prehn | K S Ravichandran | C M Rodrigues | S W Tait | H L Tang | T Vanden Berghe | W G Wood | Z Zakeri | G. Núñez | W. El-Deiry | J. Yuan

[1]  H. Tang,et al.  Strategies for tracking anastasis, a cell survival phenomenon that reverses apoptosis. , 2015, Journal of visualized experiments : JoVE.

[2]  Lorenzo Galluzzi,et al.  Molecular mechanisms of regulated necrosis. , 2014, Seminars in cell & developmental biology.

[3]  M. B. Jensen,et al.  Mitochondrial proteostasis in the control of aging and longevity. , 2014, Cell metabolism.

[4]  L. Galluzzi,et al.  Organelle-specific initiation of cell death , 2014, Nature Cell Biology.

[5]  G. Kroemer,et al.  Predictive biomarkers for cancer therapy with PARP inhibitors , 2014, Oncogene.

[6]  T. Finkel,et al.  Unresolved questions from the analysis of mice lacking MCU expression. , 2014, Biochemical and biophysical research communications.

[7]  S. Martin,et al.  Autosis: a new addition to the cell death tower of babel , 2014, Cell Death and Disease.

[8]  P. Licznerski,et al.  An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore , 2014, Proceedings of the National Academy of Sciences.

[9]  D. Vaux,et al.  RIPK1- and RIPK3-induced cell death mode is determined by target availability , 2014, Cell Death and Differentiation.

[10]  K. Segawa,et al.  Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure , 2014, Science.

[11]  D. Green,et al.  RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis , 2014, Cell Death and Differentiation.

[12]  M. Bertrand,et al.  MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. , 2014, Cell reports.

[13]  D. Green,et al.  RIPK1 Blocks Early Postnatal Lethality Mediated by Caspase-8 and RIPK3 , 2014, Cell.

[14]  D. Vaux,et al.  RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis , 2014, Cell.

[15]  D. Green,et al.  Die another way – non-apoptotic mechanisms of cell death , 2014, Journal of Cell Science.

[16]  J. Bertin,et al.  RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition , 2014, Proceedings of the National Academy of Sciences.

[17]  Y. Yoo,et al.  β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells , 2014, Cell Death and Disease.

[18]  A. Strasser,et al.  Deregulated cell death and lymphocyte homeostasis cause premature lethality in mice lacking the BH3-only proteins Bim and Bmf. , 2014, Blood.

[19]  L. Galluzzi,et al.  Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition , 2014, Oncogene.

[20]  Xiaodong Wang,et al.  Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. , 2014, Molecular cell.

[21]  Takashi Suzuki,et al.  An inhibition of p62/SQSTM1 caused autophagic cell death of several human carcinoma cells , 2014, Cancer science.

[22]  T. Dawson,et al.  Parthanatos: mitochondrial‐linked mechanisms and therapeutic opportunities , 2014, British journal of pharmacology.

[23]  L. Komuves,et al.  Activity of Protein Kinase RIPK3 Determines Whether Cells Die by Necroptosis or Apoptosis , 2014, Science.

[24]  B. Stockwell,et al.  Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models , 2014, Journal of the American Chemical Society.

[25]  Adriano G. Rossi,et al.  Apoptotic cell clearance: basic biology and therapeutic potential , 2014, Nature Reviews Immunology.

[26]  J. Ninomiya-Tsuji,et al.  TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation , 2014, The Journal of cell biology.

[27]  Changlian Zhu,et al.  Delayed, Long-Term Administration of the Caspase Inhibitor Q-VD-OPh Reduced Brain Injury Induced by Neonatal Hypoxia-Ischemia , 2014, Developmental Neuroscience.

[28]  M. Bertrand,et al.  Caspase-3 and RasGAP: a stress-sensing survival/demise switch. , 2014, Trends in cell biology.

[29]  L. Galluzzi,et al.  MLKL regulates necrotic plasma membrane permeabilization , 2014, Cell Research.

[30]  Eric H. Baehrecke,et al.  Self-consumption: the interplay of autophagy and apoptosis , 2014, Nature Reviews Molecular Cell Biology.

[31]  A. Matouschek,et al.  Regulated protein turnover: snapshots of the proteasome in action , 2014, Nature Reviews Molecular Cell Biology.

[32]  P. Vandenabeele,et al.  Regulated necrosis: the expanding network of non-apoptotic cell death pathways , 2014, Nature Reviews Molecular Cell Biology.

[33]  D. Vaux,et al.  Necroptosis induced by RIPK3 requires MLKL but not Drp1 , 2014, Cell Death and Disease.

[34]  Matthew E. Welsch,et al.  Regulation of Ferroptotic Cancer Cell Death by GPX4 , 2014, Cell.

[35]  P. Vandenabeele,et al.  Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis , 2014, Cell Death and Disease.

[36]  Jiahuai Han,et al.  Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death , 2013, Cell Research.

[37]  P. Vandenabeele,et al.  Methods to Study and Distinguish Necroptosis , 2014 .

[38]  Ling-gang Wu,et al.  Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis , 2013, Nature Cell Biology.

[39]  B. Stockwell,et al.  The role of iron and reactive oxygen species in cell death. , 2014, Nature Chemical Biology.

[40]  B. Zhivotovsky,et al.  Autophagy and metacaspase determine the mode of cell death in plants , 2013, The Journal of cell biology.

[41]  A. Bergmann,et al.  UTX coordinates steroid hormone-mediated autophagy and cell death , 2013, Nature Communications.

[42]  J. Quadrilatero,et al.  Induction of mitochondrial biogenesis protects against caspase-dependent and caspase-independent apoptosis in L6 myoblasts. , 2013, Biochimica et biophysica acta.

[43]  Z. Hei,et al.  Dexamethasone pretreatment alleviates intestinal ischemia-reperfusion injury. , 2013, The Journal of surgical research.

[44]  Maria Markaki,et al.  Crosstalk between apoptosis, necrosis and autophagy. , 2013, Biochimica et biophysica acta.

[45]  N. Curtin,et al.  Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. , 2013, Molecular aspects of medicine.

[46]  M. Lotze,et al.  Strange attractors: DAMPs and autophagy link tumor cell death and immunity , 2013, Cell Death and Disease.

[47]  D. Green,et al.  Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. , 2013, Cell reports.

[48]  R. Xavier,et al.  Autosis is a Na+,K+-ATPase–regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia–ischemia , 2013, Proceedings of the National Academy of Sciences.

[49]  F. O'Valle,et al.  PARP Inhibition Attenuates Histopathological Lesion in Ischemia/Reperfusion Renal Mouse Model after Cold Prolonged Ischemia , 2013, TheScientificWorldJournal.

[50]  Robert S. Balaban,et al.  The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter (MCU) , 2013, Nature Cell Biology.

[51]  K. Lorenz,et al.  FTY720 Ameliorates Acute Ischemic Stroke in Mice by Reducing Thrombo-Inflammation but Not by Direct Neuroprotection , 2013, Stroke.

[52]  P. Vandenabeele,et al.  RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition , 2013, Cell Death and Differentiation.

[53]  L. Galluzzi,et al.  Regulation of autophagy by stress-responsive transcription factors. , 2013, Seminars in cancer biology.

[54]  Toru Okamoto,et al.  The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. , 2013, Immunity.

[55]  J. Bertin,et al.  Toll-like Receptor 3-mediated Necrosis via TRIF, RIP3, and MLKL* , 2013, The Journal of Biological Chemistry.

[56]  S. Fulda,et al.  Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by inducing necroptosis , 2013, Cell Death and Disease.

[57]  L. Galluzzi,et al.  Decoding cell death signals in liver inflammation. , 2013, Journal of hepatology.

[58]  S. Fulda,et al.  Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes , 2013, Cell Death and Differentiation.

[59]  D. Green,et al.  Mitochondrial regulation of cell death. , 2013, Cold Spring Harbor perspectives in biology.

[60]  B. Stockwell,et al.  Identification of a small molecule that induces ATG5-and-cathepsin-l-dependent cell death and modulates polyglutamine toxicity. , 2013, Experimental cell research.

[61]  Yingying Zhang,et al.  Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis , 2013, Cell Research.

[62]  Cole M. Haynes,et al.  Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. , 2013, Trends in cell biology.

[63]  S. Zelenay,et al.  Adaptive immunity after cell death. , 2013, Trends in immunology.

[64]  D. Green,et al.  Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury , 2013, Proceedings of the National Academy of Sciences.

[65]  Jianrong Li,et al.  Caspase blockade induces RIP3-mediated programmed necrosis in Toll-like receptor-activated microglia , 2013, Cell Death and Disease.

[66]  F. Chan,et al.  TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death , 2013, Cellular and Molecular Life Sciences.

[67]  Peter Vandenabeele,et al.  Determination of apoptotic and necrotic cell death in vitro and in vivo. , 2013, Methods.

[68]  H. Walczak Death receptor-ligand systems in cancer, cell death, and inflammation. , 2013, Cold Spring Harbor perspectives in biology.

[69]  P. Vandenabeele,et al.  Many faces of DAMPs in cancer therapy , 2013, Cell Death and Disease.

[70]  O. Yoo,et al.  TAK1 regulates autophagic cell death by suppressing the phosphorylation of p70 S6 kinase 1 , 2013, Scientific Reports.

[71]  V. Giorgio,et al.  Dimers of mitochondrial ATP synthase form the permeability transition pore , 2013, Proceedings of the National Academy of Sciences.

[72]  Laurence Zitvogel,et al.  Immunogenic cell death in cancer therapy. , 2013, Annual review of immunology.

[73]  Peter Vandenabeele,et al.  Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. , 2013, Immunity.

[74]  S. Fulda,et al.  GDC-0941 enhances the lysosomal compartment via TFEB and primes glioblastoma cells to lysosomal membrane permeabilization and cell death. , 2013, Cancer letters.

[75]  L. Galluzzi,et al.  Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition , 2013, Cell cycle.

[76]  Jochen H M Prehn,et al.  Systems analysis of BCL2 protein family interactions establishes a model to predict responses to chemotherapy. , 2013, Cancer research.

[77]  D. Vaux,et al.  TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1 , 2013, Cell Death and Disease.

[78]  K. Ravichandran,et al.  Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. , 2013, Cold Spring Harbor perspectives in biology.

[79]  S. Ryter,et al.  Autophagy in human health and disease. , 2013, The New England journal of medicine.

[80]  E. Baehrecke,et al.  The role of autophagy in Drosophila metamorphosis. , 2013, Current topics in developmental biology.

[81]  Peter E. Czabotar,et al.  Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy , 2013, Nature Reviews Molecular Cell Biology.

[82]  K. Ryan,et al.  New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy , 2012, Oncogene.

[83]  P. Vandenabeele,et al.  TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation , 2012, Cell Death and Differentiation.

[84]  L. Galluzzi,et al.  Mitochondria: master regulators of danger signalling , 2012, Nature Reviews Molecular Cell Biology.

[85]  Abhishek D. Garg,et al.  Immunogenic cell death and DAMPs in cancer therapy , 2012, Nature Reviews Cancer.

[86]  F. Cecconi,et al.  Caspase-3 in the central nervous system: beyond apoptosis , 2012, Trends in Neurosciences.

[87]  A. Strasser,et al.  The role of the apoptotic machinery in tumor suppression. , 2012, Cold Spring Harbor perspectives in biology.

[88]  C. Brenner,et al.  Physiological Roles of the Permeability Transition Pore , 2012, Circulation research.

[89]  D. Rubinsztein,et al.  Autophagy modulation as a potential therapeutic target for diverse diseases , 2012, Nature Reviews Drug Discovery.

[90]  E. Baehrecke,et al.  Relationship between growth arrest and autophagy in midgut programmed cell death in Drosophila , 2012, Cell Death and Differentiation.

[91]  T. Korcsmáros,et al.  Staurosporine Induces Necroptotic Cell Death under Caspase-Compromised Conditions in U937 Cells , 2012, PloS one.

[92]  P. Vandenabeele,et al.  The flick of a switch: which death program to choose? , 2012, Cell Death and Differentiation.

[93]  D. Underhill,et al.  Information processing during phagocytosis , 2012, Nature Reviews Immunology.

[94]  U. Moll,et al.  p53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis , 2012, Cell.

[95]  W. Kraus,et al.  New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs , 2012, Nature Reviews Molecular Cell Biology.

[96]  D. Montell,et al.  Cell survival, DNA damage, and oncogenic transformation after a transient and reversible apoptotic response , 2012, Molecular biology of the cell.

[97]  H. Pan,et al.  Nec-1 Enhances Shikonin-Induced Apoptosis in Leukemia Cells by Inhibition of RIP-1 and ERK1/2 , 2012, International journal of molecular sciences.

[98]  J. Hardwick,et al.  Multipolar functions of BCL-2 proteins link energetics to apoptosis. , 2012, Trends in cell biology.

[99]  E. White Deconvoluting the context-dependent role for autophagy in cancer , 2012, Nature Reviews Cancer.

[100]  S. Cullen,et al.  A perspective on mammalian caspases as positive and negative regulators of inflammation. , 2012, Molecular cell.

[101]  M. R. Lamprecht,et al.  Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death , 2012, Cell.

[102]  D. Green,et al.  Dichotomy between RIP1- and RIP3-Mediated Necroptosis in Tumor Necrosis Factor-α-Induced Shock , 2012, Molecular medicine.

[103]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[104]  W. Kaiser,et al.  DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. , 2012, Cell host & microbe.

[105]  Ji Luo,et al.  Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis , 2012, Proceedings of the National Academy of Sciences.

[106]  Holly Anderton,et al.  Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. , 2012, Immunity.

[107]  D. Green,et al.  Mitochondria and cell signalling , 2012, Journal of Cell Science.

[108]  Xiaodong Wang,et al.  Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase , 2012, Cell.

[109]  Xiaodong Wang,et al.  The Mitochondrial Phosphatase PGAM5 Functions at the Convergence Point of Multiple Necrotic Death Pathways , 2012, Cell.

[110]  Min Zhang,et al.  RIP1 mediates the protection of geldanamycin on neuronal injury induced by oxygen‐glucose deprivation combined with zVAD in primary cortical neurons , 2012, Journal of neurochemistry.

[111]  T. Vanden Berghe,et al.  Many stimuli pull the necrotic trigger, an overview , 2011, Cell Death and Differentiation.

[112]  R A Knight,et al.  Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012 , 2011, Cell Death and Differentiation.

[113]  Sharad Kumar,et al.  Cell death by autophagy: facts and apparent artefacts , 2011, Cell Death and Differentiation.

[114]  T. Vanden Berghe,et al.  RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. , 2011, Immunity.

[115]  J. Rain,et al.  Inhibition of autophagy by TAB2 and TAB3 , 2011, The EMBO journal.

[116]  H. Steller,et al.  Programmed Cell Death in Animal Development and Disease , 2011, Cell.

[117]  D. Green,et al.  Ripped to death. , 2011, Trends in cell biology.

[118]  M. Bertrand,et al.  TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members , 2011, Cell Death and Disease.

[119]  I. Amelio,et al.  Cell death pathology: cross-talk with autophagy and its clinical implications. , 2011, Biochemical and biophysical research communications.

[120]  D. Green,et al.  RIPK-dependent necrosis and its regulation by caspases: a mystery in five acts. , 2011, Molecular cell.

[121]  R. Xavier,et al.  CASPASE 8 inhibits programmed necrosis by processing CYLD , 2011, Nature Cell Biology.

[122]  T. Tenev,et al.  The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. , 2011, Molecular cell.

[123]  Michael Karin,et al.  Inflammation meets cancer, with NF-κB as the matchmaker , 2011, Nature Immunology.

[124]  P. Wong,et al.  Amyloid precursor protein processing and Alzheimer's disease. , 2011, Annual review of neuroscience.

[125]  E. Kavanagh,et al.  Caspase signalling controls microglia activation and neurotoxicity , 2011, Nature.

[126]  Seamus J. Martin,et al.  Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. , 2011, Molecular cell.

[127]  T. Dawson,et al.  Poly(ADP-Ribose) (PAR) Binding to Apoptosis-Inducing Factor Is Critical for PAR Polymerase-1–Dependent Cell Death (Parthanatos) , 2011, Science Signaling.

[128]  M. Bertrand,et al.  cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production , 2011, Cell Death and Differentiation.

[129]  Junying Yuan,et al.  Cell death assays for drug discovery , 2011, Nature Reviews Drug Discovery.

[130]  Guy S. Salvesen,et al.  Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis , 2011, Nature.

[131]  L. Scorrano,et al.  During autophagy mitochondria elongate, are spared from degradation and sustain cell viability , 2011, Nature Cell Biology.

[132]  Wan-Wan Lin,et al.  zVAD-induced autophagic cell death requires c-Src-dependent ERK and JNK activation and reactive oxygen species generation , 2011, Autophagy.

[133]  Osamu Takeuchi,et al.  BID, BIM, and PUMA Are Essential for Activation of the BAX- and BAK-Dependent Cell Death Program , 2010, Science.

[134]  Joan W. Miller,et al.  Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis , 2010, Proceedings of the National Academy of Sciences.

[135]  J. Buchner,et al.  The heat shock response: life on the verge of death. , 2010, Molecular cell.

[136]  Guido Kroemer,et al.  Autophagy and the integrated stress response. , 2010, Molecular cell.

[137]  M. Bushell,et al.  Translational regulation of gene expression during conditions of cell stress. , 2010, Molecular cell.

[138]  P. Vandenabeele,et al.  Molecular mechanisms of necroptosis: an ordered cellular explosion , 2010, Nature Reviews Molecular Cell Biology.

[139]  G. Salvesen,et al.  Regulation of the Apaf-1–caspase-9 apoptosome , 2010, Journal of Cell Science.

[140]  D. Green,et al.  Mitochondria and cell death: outer membrane permeabilization and beyond , 2010, Nature Reviews Molecular Cell Biology.

[141]  Antonia P. Sagona,et al.  Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis , 2010, The Journal of cell biology.

[142]  S. Lipton,et al.  Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. , 2010, Molecular cell.

[143]  P. Vandenabeele,et al.  Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features , 2010, Cell Death and Differentiation.

[144]  S. Nagata,et al.  Apaf-1-independent programmed cell death in mouse development , 2010, Cell Death and Differentiation.

[145]  R. Houtkooper,et al.  MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria , 2010, Nature Cell Biology.

[146]  D. Green,et al.  Resistance to caspase-independent cell death requires persistence of intact mitochondria. , 2010, Developmental cell.

[147]  R. Koehler,et al.  Contributions of poly(ADP‐ribose) polymerase‐1 and ‐2 to nuclear translocation of apoptosis‐inducing factor and injury from focal cerebral ischemia , 2010, Journal of neurochemistry.

[148]  A. Coyle,et al.  HMGB1 and RAGE in inflammation and cancer. , 2010, Annual review of immunology.

[149]  L. Zitvogel,et al.  Decoding Cell Death Signals in Inflammation and Immunity , 2010, Cell.

[150]  Osamu Hori,et al.  Cellular Stress Responses: Cell Survival and Cell Death , 2010, International journal of cell biology.

[151]  D. Green,et al.  The BCL-2 family reunion. , 2010, Molecular cell.

[152]  N. Narula,et al.  Annexin A5 Uptake in Ischemic Myocardium: Demonstration of Reversible Phosphatidylserine Externalization and Feasibility of Radionuclide Imaging , 2010, Journal of Nuclear Medicine.

[153]  E. Baehrecke,et al.  Larval midgut destruction in Drosophila: Not dependent on caspases but suppressed by the loss of autophagy , 2010, Autophagy.

[154]  W. Junger,et al.  Circulating Mitochondrial DAMPs Cause Inflammatory Responses to Injury , 2009, Nature.

[155]  D. Grandér,et al.  Autophagy as the main means of cytotoxicity by glucocorticoids in hematological malignancies , 2009, Autophagy.

[156]  Sam W. Lee,et al.  GAMT, a p53‐Inducible Modulator of Apoptosis, Is Critical for the Adaptive Response to Nutrient Stress , 2009, Molecular cell.

[157]  Osamu Takeuchi,et al.  Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. , 2009, Molecular cell.

[158]  Eric H. Baehrecke,et al.  Autophagy, Not Apoptosis, Is Essential for Midgut Cell Death in Drosophila , 2009, Current Biology.

[159]  T. Theruvath,et al.  Mitochondrial calcium and the permeability transition in cell death. , 2009, Biochimica et biophysica acta.

[160]  L. Galluzzi,et al.  Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery , 2009, Cell Death and Differentiation.

[161]  Sanjeev Kumar,et al.  Dexamethasone ameliorates renal ischemia-reperfusion injury. , 2009, Journal of the American Society of Nephrology : JASN.

[162]  K. Khalili,et al.  Molecular mechanisms of necrosis in glioblastoma: The role of glutamate excitotoxicity , 2009, Cancer biology & therapy.

[163]  P. Boya,et al.  Autophagy is not universally required for phosphatidyl-serine exposure and apoptotic cell engulfment during neural development , 2009, Autophagy.

[164]  T. Daniels,et al.  Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75 , 2009, Molecular Cancer.

[165]  Christoph Borner,et al.  XIAP discriminates between type I and type II FAS-induced apoptosis , 2009, Nature.

[166]  M. Butterworth,et al.  Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. , 2009, Molecular cell.

[167]  M. MacFarlane Cell death pathways – potential therapeutic targets , 2009, Xenobiotica; the fate of foreign compounds in biological systems.

[168]  Na Zhang,et al.  RIP3, an Energy Metabolism Regulator That Switches TNF-Induced Cell Death from Apoptosis to Necrosis , 2009, Science.

[169]  M. Duchen,et al.  IF(1): setting the pace of the F(1)F(o)-ATP synthase. , 2009, Trends in biochemical sciences.

[170]  P. Pandolfi,et al.  Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy , 2009, Cell Death and Differentiation.

[171]  T. Cotter,et al.  Apoptosis and cancer: the genesis of a research field , 2009, Nature Reviews Cancer.

[172]  F. Chan,et al.  Phosphorylation-Driven Assembly of the RIP1-RIP3 Complex Regulates Programmed Necrosis and Virus-Induced Inflammation , 2009, Cell.

[173]  Tao Wang,et al.  Receptor Interacting Protein Kinase-3 Determines Cellular Necrotic Response to TNF-α , 2009, Cell.

[174]  R A Knight,et al.  Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes , 2009, Cell Death and Differentiation.

[175]  M. Karin,et al.  Regulation and function of NF-kappaB transcription factors in the immune system. , 2009, Annual review of immunology.

[176]  A. Strasser,et al.  The many roles of FAS receptor signaling in the immune system. , 2009, Immunity.

[177]  B. Zhivotovsky,et al.  Mitochondria as targets for cancer chemotherapy. , 2009, Seminars in cancer biology.

[178]  R A Knight,et al.  Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009 , 2005, Cell Death and Differentiation.

[179]  B. Zhivotovsky,et al.  Erratum: Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy (Cell Death and Differentiation (2009) vol. 16 (1018-1029) 10.1038/cdd.20089.46) , 2009 .

[180]  L. Galluzzi,et al.  A chemical inhibitor of Apaf-1 exerts mitochondrioprotective functions and interferes with the intra-S-phase DNA damage checkpoint , 2009, Apoptosis.

[181]  L. Galluzzi,et al.  Necroptosis: A Specialized Pathway of Programmed Necrosis , 2008, Cell.

[182]  Alexei Degterev,et al.  Identification of a Molecular Signaling Network that Regulates a Cellular Necrotic Cell Death Pathway , 2008, Cell.

[183]  D. Lauffenburger,et al.  Modeling a Snap-Action, Variable-Delay Switch Controlling Extrinsic Cell Death , 2008, PLoS biology.

[184]  R. Wanders,et al.  Cardiolipin provides an essential activating platform for caspase-8 on mitochondria , 2008, The Journal of cell biology.

[185]  G. Kroemer,et al.  Autophagic cell death: the story of a misnomer , 2008, Nature Reviews Molecular Cell Biology.

[186]  Junying Yuan,et al.  Caspases in apoptosis and beyond , 2008, Oncogene.

[187]  Didier Raoult,et al.  The virophage as a unique parasite of the giant mimivirus , 2008, Nature.

[188]  H. Steller,et al.  Regulation of apoptosis by XIAP ubiquitin-ligase activity. , 2008, Genes & development.

[189]  H. Pearson 'Virophage' suggests viruses are alive , 2008, Nature.

[190]  Tak W. Mak,et al.  Cytochrome c: functions beyond respiration , 2008, Nature Reviews Molecular Cell Biology.

[191]  M. Bertrand,et al.  cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. , 2008, Molecular cell.

[192]  Alexei Degterev,et al.  Identification of RIP1 kinase as a specific cellular target of necrostatins. , 2008, Nature chemical biology.

[193]  D. Lauffenburger,et al.  Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. , 2008, Molecular cell.

[194]  D. Green,et al.  How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? , 2008, Trends in cell biology.

[195]  P. Boya,et al.  The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium , 2008, Cell Death and Differentiation.

[196]  P. Forterre,et al.  Redefining viruses: lessons from Mimivirus , 2008, Nature Reviews Microbiology.

[197]  Rebecca C Taylor,et al.  Apoptosis: controlled demolition at the cellular level , 2008, Nature Reviews Molecular Cell Biology.

[198]  Katharina D'Herde,et al.  Apoptosis and necrosis: detection, discrimination and phagocytosis. , 2008, Methods.

[199]  J. Ryerse,et al.  BH3-only protein BIK induces caspase-independent cell death with autophagic features in Bcl-2 null cells , 2008, Oncogene.

[200]  Daniel J. Klionsky,et al.  Autophagy fights disease through cellular self-digestion , 2008, Nature.

[201]  C. Distelhorst,et al.  Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. , 2008, Annual review of physiology.

[202]  L. Galluzzi,et al.  Methods for assessing autophagy and autophagic cell death. , 2008, Methods in molecular biology.

[203]  K. Kehe,et al.  Inhibition of poly(ADP-ribose) polymerase (PARP) influences the mode of sulfur mustard (SM)-induced cell death in HaCaT cells , 2008, Archives of Toxicology.

[204]  N. Danial,et al.  BCL-2 Family Proteins: Critical Checkpoints of Apoptotic Cell Death , 2007, Clinical Cancer Research.

[205]  E. Baehrecke,et al.  Growth Arrest and Autophagy Are Required for Salivary Gland Cell Degradation in Drosophila , 2007, Cell.

[206]  Randall W. King,et al.  A Nonapoptotic Cell Death Process, Entosis, that Occurs by Cell-in-Cell Invasion , 2007, Cell.

[207]  C. Szabó,et al.  Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. , 2007, Cardiovascular drug reviews.

[208]  M. Peter,et al.  The CD95 Receptor: Apoptosis Revisited , 2007, Cell.

[209]  L. Galluzzi,et al.  Mitochondrial apoptosis without VDAC , 2007, Nature Cell Biology.

[210]  L. Zitvogel,et al.  Cell death modalities: classification and pathophysiological implications , 2007, Cell Death and Differentiation.

[211]  W. Craigen,et al.  Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death , 2007, Nature Cell Biology.

[212]  P. Saikumar Differential Energy Requirements for Caspase Activation and Apoptosis , 2007 .

[213]  Erinna F. Lee,et al.  Apoptosis Initiated When BH3 Ligands Engage Multiple Bcl-2 Homologs, Not Bax or Bak , 2007, Science.

[214]  J. Mariani,et al.  Specific caspase inhibitor Q‐VD‐OPh prevents neonatal stroke in P7 rat: a role for gender , 2007, Journal of neurochemistry.

[215]  A. Strasser,et al.  BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. , 2007, Developmental cell.

[216]  Lorenzo Galluzzi,et al.  Mitochondrial membrane permeabilization in cell death. , 2007, Physiological reviews.

[217]  T. Dawson,et al.  Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death , 2006, Proceedings of the National Academy of Sciences.

[218]  Peter Vandenabeele,et al.  Caspase Inhibitors Promote Alternative Cell Death Pathways , 2006, Science's STKE.

[219]  Dale E. Bredesen,et al.  Cell death in the nervous system , 2006, Nature.

[220]  S. Grimm,et al.  The permeability transition pore complex in cancer cell death , 2006, Oncogene.

[221]  John C Reed,et al.  Drug Insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms , 2006, Nature Clinical Practice Oncology.

[222]  H. Fearnhead,et al.  Intracellular Nucleotides Act as Critical Prosurvival Factors by Binding to Cytochrome C and Inhibiting Apoptosome , 2006, Cell.

[223]  L. Galluzzi,et al.  Mechanisms of cytochrome c release from mitochondria , 2006, Cell Death and Differentiation.

[224]  T. Racek,et al.  Caspase inhibition in apoptotic T cells triggers necrotic cell death depending on the cell type and the proapoptotic stimulus , 2006, Journal of cellular biochemistry.

[225]  Keisuke Kuida,et al.  Caspases 3 and 7: Key Mediators of Mitochondrial Events of Apoptosis , 2006, Science.

[226]  Michael O. Hengartner,et al.  Developmental cell biology: Developmental apoptosis in C. elegans: a complex CEDnario , 2006, Nature Reviews Molecular Cell Biology.

[227]  G. Kroemer,et al.  Redundant cell death mechanisms as relics and backups , 2005, Cell Death and Differentiation.

[228]  T. Fan,et al.  Caspase family proteases and apoptosis. , 2005, Acta biochimica et biophysica Sinica.

[229]  D. Green,et al.  Pharmacological manipulation of cell death: clinical applications in sight? , 2005, The Journal of clinical investigation.

[230]  Michael Karin,et al.  IKK/NF-κB signaling: balancing life and death – a new approach to cancer therapy , 2005 .

[231]  A. Colak,et al.  The neuroprotective effects of z-DEVD.fmk, a caspase-3 inhibitor, on traumatic spinal cord injury in rats. , 2005, Surgical neurology.

[232]  S. Korsmeyer,et al.  Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[233]  Guido Kroemer,et al.  Caspase-independent cell death , 2005, Nature Medicine.

[234]  Alexei Degterev,et al.  Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury , 2005, Nature chemical biology.

[235]  Eric H. Baehrecke,et al.  Autophagy: dual roles in life and death? , 2005, Nature Reviews Molecular Cell Biology.

[236]  P. Bernardi,et al.  Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D* , 2005, Journal of Biological Chemistry.

[237]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[238]  Tetsuya Watanabe,et al.  Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death , 2005, Nature.

[239]  Michael Karin,et al.  IKK/NF-kappaB signaling: balancing life and death--a new approach to cancer therapy. , 2005, The Journal of clinical investigation.

[240]  R A Knight,et al.  Classification of cell death: recommendations of the Nomenclature Committee on Cell Death , 2005, Cell Death and Differentiation.

[241]  Sharad Kumar,et al.  Drosophila caspase DRONC is required for specific developmental cell death pathways and stress-induced apoptosis. , 2004, Developmental cell.

[242]  B. Stoica,et al.  Caspase Inhibitor z-DEVD-fmk Attenuates Calpain and Necrotic Cell Death in Vitro and after Traumatic Brain Injury , 2004, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[243]  M. Crompton,et al.  Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis. , 2004, The Biochemical journal.

[244]  P. Brookes,et al.  Calcium, ATP, and ROS: a mitochondrial love-hate triangle. , 2004, American journal of physiology. Cell physiology.

[245]  G. Melino,et al.  Regulation of the apoptosis–necrosis switch , 2004, Oncogene.

[246]  G. Kroemer,et al.  A novel mechanism for imatinib mesylate-induced cell death of BCR-ABL-positive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity. , 2004, Blood.

[247]  J. Borowitz,et al.  Caspase inhibition switches the mode of cell death induced by cyanide by enhancing reactive oxygen species generation and PARP-1 activation. , 2004, Toxicology and applied pharmacology.

[248]  T. Caserta,et al.  Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties , 2003, Apoptosis.

[249]  P. Clarke,et al.  Developmental cell death: morphological diversity and multiple mechanisms , 2004, Anatomy and Embryology.

[250]  G. Jan,et al.  Study of PTPC Composition during Apoptosis for Identification of Viral Protein Target , 2003, Annals of the New York Academy of Sciences.

[251]  Alexei Degterev,et al.  A decade of caspases , 2003, Oncogene.

[252]  M. Hasmann,et al.  Poly ADP-ribose polymerase (PARP) inhibitors transiently protect leukemia cells from alkylating agent induced cell death by three different effects. , 2003, European journal of medical research.

[253]  M. Tymianski,et al.  Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. , 2003, Cell calcium.

[254]  A. Rebbaa,et al.  Caspase inhibition switches doxorubicin-induced apoptosis to senescence , 2003, Oncogene.

[255]  Jean-Michel Claverie,et al.  A Giant Virus in Amoebae , 2003, Science.

[256]  William C Hahn,et al.  Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. , 2003, Cancer cell.

[257]  T. Vanden Berghe,et al.  Disruption of HSP90 Function Reverts Tumor Necrosis Factor-induced Necrosis to Apoptosis* , 2003, The Journal of Biological Chemistry.

[258]  R. Lockshin,et al.  Caspase-independent cell deaths. , 2002, Current opinion in cell biology.

[259]  D. Holtzman,et al.  Selective, Reversible Caspase-3 Inhibitor Is Neuroprotective and Reveals Distinct Pathways of Cell Death after Neonatal Hypoxic-ischemic Brain Injury* , 2002, The Journal of Biological Chemistry.

[260]  T. Dawson,et al.  Mediation of Poly(ADP-Ribose) Polymerase-1-Dependent Cell Death by Apoptosis-Inducing Factor , 2002, Science.

[261]  H. Wajant,et al.  The Fas Signaling Pathway: More Than a Paradigm , 2002, Science.

[262]  A. Strasser,et al.  Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins , 2002, Cell Death and Differentiation.

[263]  P. Krammer,et al.  Tumor Immunology , 2018, Medical Immunology.

[264]  D. Green,et al.  The role of ARK in stress-induced apoptosis in Drosophila cells , 2002, The Journal of cell biology.

[265]  P. Vandenabeele,et al.  A matrix-assisted laser desorption ionization post-source decay (MALDI-PSD) analysis of proteins released from isolated liver mitochondria treated with recombinant truncated Bid , 2002, Cell Death and Differentiation.

[266]  D. Ferrari,et al.  Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. , 2002, Molecular biology of the cell.

[267]  A. Strasser,et al.  BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes , 2002, Nature.

[268]  D. Vaux Apoptosis Timeline , 2002, Cell Death and Differentiation.

[269]  P. Maher,et al.  Oxytosis: A novel form of programmed cell death. , 2001, Current topics in medicinal chemistry.

[270]  Andreas Villunger,et al.  Bmf: A Proapoptotic BH3-Only Protein Regulated by Interaction with the Myosin V Actin Motor Complex, Activated by Anoikis , 2001, Science.

[271]  W. Fiers,et al.  Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria , 2001, Cell Death and Differentiation.

[272]  R W Oppenheim,et al.  Programmed Cell Death of Developing Mammalian Neurons after Genetic Deletion of Caspases , 2001, The Journal of Neuroscience.

[273]  T. Mak,et al.  Caspase-independent cell death and mitochondrial disruptions observed in the Apaf1-deficient cells. , 2001, Journal of biochemistry.

[274]  S. Korsmeyer,et al.  Proapoptotic BAX and BAK: A Requisite Gateway to Mitochondrial Dysfunction and Death , 2001, Science.

[275]  E. Sahai,et al.  Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I , 2001, Nature Cell Biology.

[276]  Emad S. Alnemri,et al.  A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis , 2001, Nature.

[277]  P. Nicotera,et al.  Apoptosis in Caspase-inhibited Neurons , 2001, Molecular medicine.

[278]  S. Korsmeyer,et al.  The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. , 2000, Molecular cell.

[279]  Brian Seed,et al.  Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule , 2000, Nature Immunology.

[280]  Tak W. Mak,et al.  Two Distinct Pathways Leading to Nuclear Apoptosis , 2000, The Journal of experimental medicine.

[281]  Xiaodong Wang,et al.  Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition , 2000, Cell.

[282]  Robert L Moritz,et al.  Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins , 2000, Cell.

[283]  E. Slee,et al.  Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release , 2000, Cell Death and Differentiation.

[284]  H. Roach,et al.  Physiological cell death of chondrocytes in vivo is not confined to apoptosis. New observations on the mammalian growth plate. , 2000, The Journal of bone and joint surgery. British volume.

[285]  R. Hammer,et al.  Adult Apaf-1-deficient mice exhibit male infertility. , 2000, Developmental biology.

[286]  H. Okano,et al.  Control of the cell death pathway by Dapaf-1, a Drosophila Apaf-1/CED-4-related caspase activator. , 1999, Molecular cell.

[287]  P. Gruss,et al.  Interdigital cell death can occur through a necrotic and caspase-independent pathway , 1999, Current Biology.

[288]  D. Green,et al.  Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. , 1999, Blood.

[289]  S. Korsmeyer,et al.  Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis , 1999, Nature.

[290]  Ingo Schmitz,et al.  Differential Modulation of Apoptosis Sensitivity in CD95 Type I and Type II Cells* , 1999, The Journal of Biological Chemistry.

[291]  P. Nicotera,et al.  ATP Controls Neuronal Apoptosis Triggered by Microtubule Breakdown or Potassium Deprivation , 1999, Molecular medicine.

[292]  P. Mazzarello A unifying concept: the history of cell theory , 1999, Nature Cell Biology.

[293]  J. Martinou,et al.  The Release of Cytochrome c from Mitochondria during Apoptosis of NGF-deprived Sympathetic Neurons Is a Reversible Event , 1999, The Journal of cell biology.

[294]  S. Korsmeyer,et al.  Caspase Cleaved BID Targets Mitochondria and Is Required for Cytochrome c Release, while BCL-XL Prevents This Release but Not Tumor Necrosis Factor-R1/Fas Death* , 1999, The Journal of Biological Chemistry.

[295]  P. Vandenabeele,et al.  Non‐specific effects of methyl ketone peptide inhibitors of caspases , 1999, FEBS letters.

[296]  P. Nicotera,et al.  Intracellular ATP, a switch in the decision between apoptosis and necrosis. , 1998, Toxicology letters.

[297]  Francesco Cecconi,et al.  Apaf1 (CED-4 Homolog) Regulates Programmed Cell Death in Mammalian Development , 1998, Cell.

[298]  T. Mak,et al.  Apaf1 Is Required for Mitochondrial Pathways of Apoptosis and Brain Development , 1998, Cell.

[299]  W. Fiers,et al.  Dual Signaling of the Fas Receptor: Initiation of Both Apoptotic and Necrotic Cell Death Pathways , 1998, The Journal of experimental medicine.

[300]  Xiaodong Wang,et al.  Bid, a Bcl2 Interacting Protein, Mediates Cytochrome c Release from Mitochondria in Response to Activation of Cell Surface Death Receptors , 1998, Cell.

[301]  Keisuke Kuida,et al.  Reduced Apoptosis and Cytochrome c–Mediated Caspase Activation in Mice Lacking Caspase 9 , 1998, Cell.

[302]  José Luis de la Pompa,et al.  Differential Requirement for Caspase 9 in Apoptotic Pathways In Vivo , 1998, Cell.

[303]  W. Fiers,et al.  Inhibition of Caspases Increases the Sensitivity of L929 Cells to Necrosis Mediated by Tumor Necrosis Factor , 1998, The Journal of experimental medicine.

[304]  Alan G. Porter,et al.  Caspase-3 Is Required for DNA Fragmentation and Morphological Changes Associated with Apoptosis* , 1998, The Journal of Biological Chemistry.

[305]  S. Lowe,et al.  Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. , 1998, Genes & development.

[306]  M. Moskowitz,et al.  Attenuation of Delayed Neuronal Death after Mild Focal Ischemia in Mice by Inhibition of the Caspase Family , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[307]  S. Srinivasula,et al.  Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade , 1997, Cell.

[308]  W. Fiers,et al.  Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. , 1997, Cytokine.

[309]  A. Fraser,et al.  drICE is an essential caspase required for apoptotic activity in Drosophila cells , 1997, The EMBO journal.

[310]  G. Kroemer,et al.  The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death , 1997, Oncogene.

[311]  A. Stewart,et al.  Ischaemia-reperfusion injury in mouse skeletal muscle is reduced by N omega-nitro-L-arginine methyl ester and dexamethasone. , 1997, European journal of pharmacology.

[312]  Xiaodong Wang,et al.  Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3 , 1997, Cell.

[313]  Margot Thome,et al.  Inhibition of death receptor signals by cellular FLIP , 1997, Nature.

[314]  Y. Tsujimoto,et al.  Intracellular ATP levels determine cell death fate by apoptosis or necrosis. , 1997, Cancer research.

[315]  P. Nicotera,et al.  Intracellular Adenosine Triphosphate (ATP) Concentration: A Switch in the Decision Between Apoptosis and Necrosis , 1997, The Journal of experimental medicine.

[316]  Dean P. Jones,et al.  Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked , 1997, Science.

[317]  H. Steller,et al.  DCP-1, a Drosophila Cell Death Protease Essential for Development , 1997, Science.

[318]  G. Evan,et al.  Inhibition of Ced-3/ICE-related Proteases Does Not Prevent Cell Death Induced by Oncogenes, DNA Damage, or the Bcl-2 Homologue Bak , 1997, The Journal of cell biology.

[319]  Keisuke Kuida,et al.  Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice , 1996, Nature.

[320]  J. Heitman,et al.  Calcineurin mutants render T lymphocytes resistant to cyclosporin A. , 1996, Molecular Pharmacology.

[321]  Xiaodong Wang,et al.  Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c , 1996, Cell.

[322]  Matthias Mann,et al.  FLICE, A Novel FADD-Homologous ICE/CED-3–like Protease, Is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex , 1996, Cell.

[323]  G. Cohen,et al.  Benzyloxycarbonyl-Val-Ala-Asp (OMe) fluoromethylketone (Z-VAD.FMK) inhibits apoptosis by blocking the processing of CPP32. , 1996, The Biochemical journal.

[324]  A. Chinnaiyan,et al.  FADD/MORT1 Is a Common Mediator of CD95 (Fas/APO-1) and Tumor Necrosis Factor Receptor-induced Apoptosis (*) , 1996, The Journal of Biological Chemistry.

[325]  M. Peter,et al.  Cytotoxicity‐dependent APO‐1 (Fas/CD95)‐associated proteins form a death‐inducing signaling complex (DISC) with the receptor. , 1995, The EMBO journal.

[326]  D. Green,et al.  Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl , 1995, The Journal of experimental medicine.

[327]  G. Cohen,et al.  An ICE‐like protease is a common mediator of apoptosis induced by diverse stimuli in human monocytic THP.1 cells , 1995, FEBS letters.

[328]  S. Lipton,et al.  Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function , 1995, Neuron.

[329]  H. Horvitz,et al.  Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein , 1995, Nature.

[330]  Arul M. Chinnaiyan,et al.  FADD, a novel death domain-containing protein, interacts with the death domain of fas and initiates apoptosis , 1995, Cell.

[331]  S. Orrenius,et al.  Involvement of multiple proteases during Fas‐mediated apoptosis in T lymphocytes , 1995, FEBS letters.

[332]  D. Harrison,et al.  Cell death in health and disease: the biology and regulation of apoptosis. , 1995, Seminars in cancer biology.

[333]  W. Fiers,et al.  TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. , 1995, Journal of inflammation.

[334]  Shai Shaham,et al.  The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme , 1993, Cell.

[335]  C. Klee,et al.  Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[336]  L. Gooding,et al.  Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. , 1988, Journal of immunology.

[337]  R. Lockshin,et al.  Programmed cell death. , 1974, Life sciences.

[338]  H. Merker,et al.  The morphology of various types of cell death in prenatal tissues. , 1973, Teratology.

[339]  A. Wyllie,et al.  Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics , 1972, British Journal of Cancer.

[340]  R. Lockshin,et al.  Programmed cell death—II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths , 1964 .