MultiGLODS: global and local multiobjective optimization using direct search

The optimization of multimodal functions is a challenging task, in particular when derivatives are not available for use. Recently, in a directional direct search framework, a clever multistart strategy was proposed for global derivative-free optimization of single objective functions. The goal of the current work is to generalize this approach to the computation of global Pareto fronts for multiobjective multimodal derivative-free optimization problems. The proposed algorithm alternates between initializing new searches, using a multistart strategy, and exploring promising subregions, resorting to directional direct search. Components of the objective function are not aggregated and new points are accepted using the concept of Pareto dominance. The initialized searches are not all conducted until the end, merging when they start to be close to each other. The convergence of the method is analyzed under the common assumptions of directional direct search. Numerical experiments show its ability to generate approximations to the different Pareto fronts of a given problem.

[1]  John L. Nazareth,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[2]  Charles Audet,et al.  Nonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search , 2006, J. Glob. Optim..

[3]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[4]  W. J. Whiten,et al.  Computational investigations of low-discrepancy sequences , 1997, TOMS.

[5]  Stefan Roth,et al.  Covariance Matrix Adaptation for Multi-objective Optimization , 2007, Evolutionary Computation.

[6]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[7]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[8]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[9]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[10]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[11]  Chandler Davis THEORY OF POSITIVE LINEAR DEPENDENCE. , 1954 .

[12]  Stefano Lucidi,et al.  A Derivative-Free Approach to Constrained Multiobjective Nonsmooth Optimization , 2016, SIAM J. Optim..

[13]  J. Jahn Introduction to the Theory of Nonlinear Optimization , 1994 .

[14]  A. L. Custódio,et al.  GLODS: Global and Local Optimization using Direct Search , 2014, Journal of Global Optimization.

[15]  A. L. Custódio,et al.  Recent Developments in Derivative-Free Multiobjective Optimisation , 2012, Computational Technology Reviews.

[16]  Charles Audet,et al.  Multiobjective Optimization Through a Series of Single-Objective Formulations , 2008, SIAM J. Optim..

[17]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[18]  Max D. Morris The Design and Analysis of Computer Experiments. Thomas J. Santner , Brian J. Williams , and William I. Notz , 2004 .

[19]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[20]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[21]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[22]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[23]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[24]  Jong-hyun Ryu,et al.  A Derivative-Free Trust-Region Method for Biobjective Optimization , 2014, SIAM J. Optim..

[25]  Charles Audet,et al.  A mesh adaptive direct search algorithm for multiobjective optimization , 2009, Eur. J. Oper. Res..

[26]  Luís N. Vicente,et al.  Direct Multisearch for Multiobjective Optimization , 2011, SIAM J. Optim..

[27]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[28]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..