Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication

Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows to stabilize states, correct errors and to realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field programmable gate array (FPGA) based digital signal processing system capable of real-time quadrature demodulation, determination of the qubit state and generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of $110\,\mathrm{ns}$ with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.

[1]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[2]  L. DiCarlo,et al.  Fast reset and suppressing spontaneous emission of a superconducting qubit , 2010, 1003.0142.

[3]  Smith,et al.  Observation of zero-point noise squeezing via a Josephson-parametric amplifier. , 1990, Physical review letters.

[4]  L. Tornberg,et al.  Reversing Quantum Trajectories with Analog Feedback , 2013, 1311.5472.

[5]  Joseph E. Reiner,et al.  Quantum feedback in a weakly driven cavity QED system , 2004 .

[6]  David Reilly,et al.  Engineering the quantum-classical interface of solid-state qubits , 2015, npj Quantum Information.

[7]  M. A. Rol,et al.  Active resonator reset in the nonlinear dispersive regime of circuit QED , 2016, 1604.00916.

[8]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[9]  Shilin Ng,et al.  Optimal signal processing for continuous qubit readout , 2014, 1405.7262.

[10]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[11]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[12]  C. C. Bultink,et al.  Feedback control of a solid-state qubit using high-fidelity projective measurement. , 2012, Physical review letters.

[13]  A. N. Korotkov,et al.  Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback , 2012, Nature.

[14]  A. Wallraff,et al.  Controlling the dynamic range of a Josephson parametric amplifier , 2013, 1305.6583.

[15]  J. Clarke,et al.  The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.

[16]  J. Clarke,et al.  Dispersive readout of a flux qubit at the single-photon level , 2011, 1109.2858.

[17]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[18]  Werner Wegscheider,et al.  Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator , 2017, 1701.03433.

[19]  J. E. Mooij,et al.  Quantum non-demolition measurement of a superconducting two-level system , 2007 .

[20]  S. Girvin,et al.  Quantum State Sensitivity of an Autoresonant Superconducting Circuit , 2012, 1208.4646.

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  Edoardo Charbon,et al.  A reconfigurable cryogenic platform for the classical control of quantum processors. , 2016, The Review of scientific instruments.

[23]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[24]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[25]  C. K. Andersen,et al.  Closing a quantum feedback loop inside a cryostat: Autonomous state preparation and long-time memory of a superconducting qubit , 2015, 1508.07780.

[26]  Richard G. Lyons,et al.  Understanding Digital Signal Processing , 1996 .

[27]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[28]  J. D. Franson,et al.  Demonstration of feed-forward control for linear optics quantum computation , 2002 .

[29]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[30]  R J Schoelkopf,et al.  Circuit QED and engineering charge-based superconducting qubits , 2009, 0912.3902.

[31]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[32]  H M Wiseman,et al.  Capture and release of a conditional state of a cavity QED system by quantum feedback. , 2002, Physical review letters.

[33]  L Frunzio,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2005, Physical review letters.

[34]  L. DiCarlo,et al.  Density-matrix simulation of small surface codes under current and projected experimental noise , 2017, 1703.04136.

[35]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[36]  S. Filipp,et al.  Observation of two-mode squeezing in the microwave frequency domain. , 2011, Physical review letters.

[37]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[38]  R. J. Schoelkopf,et al.  Protocols for optimal readout of qubits using a continuous quantum nondemolition measurement , 2007 .

[39]  R. J. Schoelkopf,et al.  Dispersive measurements of superconducting qubit coherence with a fast latching readout , 2006 .

[40]  V. Schmitt,et al.  Multiplexed Readout of Transmon Qubits with Josephson Bifurcation Amplifiers , 2014, 1409.5647.

[41]  Brian Donovan,et al.  Hardware for dynamic quantum computing. , 2017, The Review of scientific instruments.

[42]  John Clarke,et al.  Heralded state preparation in a superconducting qubit. , 2012, Physical review letters.

[43]  Nissim Ofek,et al.  Comparing and combining measurement-based and driven-dissipative entanglement stabilization , 2015, 1509.00860.

[44]  Franco Nori,et al.  Quantum feedback: theory, experiments, and applications , 2014, 1407.8536.

[45]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[46]  A. Wallraff,et al.  Quantum-limited amplification and entanglement in coupled nonlinear resonators. , 2014, Physical review letters.

[47]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[48]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[49]  Y. Salathe,et al.  Rapid High-Fidelity Single-Shot Dispersive Readout of Superconducting Qubits , 2017, 1701.06933.

[50]  G. Hilton,et al.  Single-sideband modulator for frequency domain multiplexing of superconducting qubit readout , 2017, 1703.01693.

[51]  Y. Salathe,et al.  Deterministic quantum teleportation with feed-forward in a solid state system , 2013, Nature.

[52]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[53]  Rupp,et al.  Observation of parametric amplification and deamplification in a Josephson parametric amplifier. , 1989, Physical review. A, General physics.

[54]  J. Gambetta,et al.  Fast, high-fidelity readout of multiple qubits , 2017 .

[55]  G. C. Hilton,et al.  Strongly quadrature-dependent noise in superconducting micro-resonators measured at the vacuum-noise limit , 2010, 1008.0046.

[56]  Jay M. Gambetta,et al.  Rapid Driven Reset of a Qubit Readout Resonator , 2015, 1503.01456.

[57]  Chad Rigetti,et al.  Josephson amplifier for qubit readout , 2011, 1103.1405.

[58]  R. Barends,et al.  Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching , 2015, 1503.04364.

[59]  Heng Shen,et al.  Deterministic quantum teleportation between distant atomic objects , 2012, Nature Physics.

[60]  J. R. Petta,et al.  Strong coupling of a single electron in silicon to a microwave photon , 2017, Science.

[61]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[62]  Stefano Poletto,et al.  Frequency division multiplexing readout and simultaneous manipulation of an array of flux qubits , 2012, 1205.6375.

[63]  R Patil Vijay,et al.  Observation of quantum jumps in a superconducting artificial atom. , 2010, Physical review letters.

[64]  M Mirrahimi,et al.  Demonstrating a driven reset protocol for a superconducting qubit. , 2012, Physical review letters.

[65]  L Frunzio,et al.  Approaching unit visibility for control of a superconducting qubit with dispersive readout. , 2005, Physical review letters.

[66]  Canada,et al.  Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics , 2009, 0907.2549.

[67]  M. Scully,et al.  Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations , 2003 .

[68]  I D Conway Lamb,et al.  An FPGA-based instrumentation platform for use at deep cryogenic temperatures. , 2015, The Review of scientific instruments.

[69]  J M Gambetta,et al.  Measurement-induced qubit state mixing in circuit QED from up-converted dephasing noise. , 2012, Physical review letters.

[70]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[71]  A. Wallraff,et al.  Characterizing Quantum Microwave Radiation and its Entanglement with Superconducting Qubits , 2012, 1206.3405.

[72]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[73]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[74]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[75]  Uwe Meyer-Baese Digital Signal Processing with Field Programmable Gate Arrays , 2001 .

[76]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[77]  Naoki Yamamoto,et al.  Coherent versus measurement feedback: Linear systems theory for quantum information , 2014, 1406.6466.

[78]  E. Knill,et al.  Complete quantum teleportation using nuclear magnetic resonance , 1998, Nature.

[79]  F. Sciarrino,et al.  "Active" Teleportation of a Quantum Bit , 2002 .

[80]  Suman Kundu,et al.  Broadband parametric amplification with impedance engineering: Beyond the gain-bandwidth product , 2015, 1510.03065.

[81]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[82]  L. DiCarlo,et al.  Deterministic entanglement of superconducting qubits by parity measurement and feedback , 2013, Nature.

[83]  K. Koshino,et al.  Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits , 2014, Nature Communications.

[84]  L. DiCarlo,et al.  Initialization by measurement of a superconducting quantum bit circuit. , 2012, Physical review letters.

[85]  Mazyar Mirrahimi,et al.  Persistent control of a superconducting qubit by stroboscopic measurement feedback , 2012, 1301.6095.

[86]  J. Fink,et al.  Experimental state tomography of itinerant single microwave photons. , 2011, Physical review letters.

[87]  Mazyar Mirrahimi,et al.  Real-time quantum feedback prepares and stabilizes photon number states , 2011, Nature.

[88]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[89]  Xiaosong Ma,et al.  Quantum teleportation over 143 kilometres using active feed-forward , 2012, Nature.

[90]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[91]  Alexandre Blais,et al.  Superconducting qubit with Purcell protection and tunable coupling. , 2010, Physical review letters.

[92]  Michel Devoret,et al.  Introduction to parametric amplification of quantum signals with Josephson circuits , 2016, 1605.00539.

[93]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[94]  K. Jacobs,et al.  Coherent versus measurement-based feedback for controlling a single qubit , 2016, 1606.06507.

[95]  Denis Vion,et al.  Single-shot qubit readout in circuit quantum electrodynamics , 2009, 1005.5615.

[96]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[97]  Rob Thew,et al.  Quantum Science and Technology—one year on , 2018 .

[98]  J. M. Gambetta,et al.  Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator , 2010, 1011.1949.

[99]  Todd A. Brun,et al.  Quantum Error Correction , 2019, Oxford Research Encyclopedia of Physics.

[100]  Yasunobu Nakamura,et al.  Flux-driven Josephson parametric amplifier , 2008, 0808.1386.

[101]  V. Considine Digital complex sampling , 1983 .

[102]  S. Girvin,et al.  Continuous Quantum Nondemolition Measurement of the Transverse Component of a Qubit. , 2016, Physical review letters.

[103]  C. Wilson,et al.  Single-shot read-out of a superconducting qubit using a Josephson parametric oscillator , 2015, Nature Communications.

[104]  John M. Martinis,et al.  Multiplexed dispersive readout of superconducting phase qubits , 2011, 1209.1781.

[105]  Jens Koch,et al.  Suppressing Charge Noise Decoherence in Superconducting Charge Qubits , 2007, 0712.3581.

[106]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[107]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.