Subdirect Decompositions of Lattice Effect Algebras

We prove a theorem about subdirect decompositions of lattice effect algebras. Further, we show how, under these decompositions, blocks, sets of sharp elements and centers of those effects algebras are decomposed. As an application we prove a statement about the existence of subadditive state on some block-finite effect algebras.

[1]  R. J. Greechie,et al.  The center of an effect algebra , 1995 .

[2]  Zdenka Riečanová ARCHIMEDEAN AND BLOCK-FINITE LATTICE EFFECT ALGEBRAS , 2000 .

[3]  Zdenka Riečanová Proper Effect Algebras Admitting No States , 2001 .

[4]  Ulrich Höhle,et al.  Non-classical logics and their applications to fuzzy subsets : a handbook of the mathematical foundations of fuzzy set theory , 1995 .

[5]  Z. Riecanová,et al.  Subalgebras, Intervals, and Central Elements of Generalized Effect Algebras , 1999 .

[6]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[7]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[8]  Zdenka Riecanová Continuous lattice effect algebras admitting order-continuous states , 2003, Fuzzy Sets Syst..

[9]  Zdenka Riečanová DISTRIBUTIVE ATOMIC EFFECT ALGEBRAS , 2003 .

[10]  Richard J. Greechie,et al.  Orthomodular Lattices Admitting No States , 1971 .

[11]  Zdenka Riečanová ORTHOGONAL SETS IN EFFECT ALGEBRAS , 2001 .

[12]  Zdenka Riečanová Smearings of States Defined on Sharp Elements Onto Effect Algebras , 2002 .

[13]  Zdenka Riečanová,et al.  Generalization of Blocks for D-Lattices and Lattice-Ordered Effect Algebras , 2000 .

[14]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[15]  G. Grätzer General Lattice Theory , 1978 .

[16]  Zdenka Riečanová Lattice effect algebras with (o)-continuous faithful valuations , 2001, Fuzzy Sets Syst..