ℓ-modular representations of unramified p-adic U(2,1)

We construct all cuspidal l-modular representations of a unitary group in three variables attached to an unramified extension of local fields of odd residual characteristic p with l\neq p. We describe the l-modular principal series and show that the supercuspidal support of an irreducible l-modular representation is unique up to conjugacy.

[1]  A. Mínguez,et al.  Types modulo ℓ pour les formes intérieures de GLn sur un corps local non archimédien , 2014, 1404.0804.

[2]  S. Stevens,et al.  Block decomposition of the category of l-modular smooth representations of GL(n,F) and its inner forms , 2014, 1402.5349.

[3]  A. Mínguez,et al.  Représentations lisses modulo l de GL m (D) , 2011, 1110.1467.

[4]  C. Blondel Representation de Weil et beta-extensions , 2009, 1001.0129.

[5]  V. Sécherre,et al.  REPRÉSENTATIONS LISSES DE $\mathrm{GL}_{m}(\mathrm{D})$ IV : REPRÉSENTATIONS SUPERCUSPIDALES , 2008, Journal of the Institute of Mathematics of Jussieu.

[6]  S. Stevens The supercuspidal representations of p-adic classical groups , 2006, math/0607622.

[7]  J. Dat Finitude pour les représentations lisses de groupes p-adiques , 2006, Journal of the Institute of Mathematics of Jussieu.

[8]  S. Stevens,et al.  Representations lisses de GL(m,D), IV : representations supercuspidales , 2006, math/0607298.

[9]  Ju-lee Kim Supercuspidal representations: An exhaustion theorem , 2006, math/0607262.

[10]  S. Stevens Semisimple characters for p-adic classical groups , 2005 .

[11]  Corinne Blondel Quelques propriétés des paires couvrantes , 2005 .

[12]  Jean-François Dat ν-tempered representations of p-adic groups, I: l-adic case , 2005 .

[13]  G. Hiss Hermitian function fields, classical unitals, and representations of 3-dimensional unitary groups , 2004 .

[14]  K. Waki,et al.  Decomposition numbers of SU(3, q 2) , 2002 .

[15]  Laurent Blasco Description du dual admissible de U(2,1)(F) par la théorie des types de C. Bushnell et P. Kutzko , 2002 .

[16]  R. Rouquier,et al.  Catégories dérivées et variétés de Deligne-Lusztig , 2002, math/0201146.

[17]  J. Yu Construction of tame supercuspidal representations , 2001 .

[18]  L. Morris Level Zero G-Types , 1999, Compositio Mathematica.

[19]  Ernst-Wilhelm Zink,et al.  K-types for the tempered components of a p-adic general linear group (With an Appendix by P. Schneider, U. Stuhler: The definition of the tempered category) , 1999 .

[20]  M. Vigneras Induced R-representations of p-adic reductive groups , 1998 .

[21]  CJ Bushnell,et al.  Smooth representations of reductive p‐ADIC groups: structure theory via types , 1998 .

[22]  N. Vavilov REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE (London Mathematical Society Student Texts 21) , 1995 .

[23]  G. Hiss,et al.  Cuspidal Unipotent Brauer Characters , 1994 .

[24]  L. Morris Tamely ramified intertwining algebras , 1993 .

[25]  C. Bushnell,et al.  The admissible dual of GL(N) via compact open subgroups , 1993 .

[26]  Jean Michel,et al.  Representations of Finite Groups of Lie Type , 1991 .

[27]  G. Lehrer,et al.  Induced cuspidal representations and generalised Hecke rings , 1980 .

[28]  Charles W. Curtis,et al.  Representations of finite groups of Lie type , 1979 .

[29]  G. Lusztig,et al.  The characters of the finite unitary groups , 1977 .

[30]  Marie-France Vignéras Irreducible Modular Representations of a Reductive p-Adic Group and Simple Modules for Hecke Algebras , 2001 .

[31]  M. Vigneras On highest Whittaker Models and Integral Structures , 2001 .

[32]  G. Hiss,et al.  Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type , 1996 .

[33]  C. Bushnell,et al.  The admissible dual of ${\rm SL}(N)$. I , 1993 .

[34]  M. Geck Irreducible brauer characters of the 3-dimensional special unitary groups in non-defining characteristic ∗ , 1990 .

[35]  D. Keys Principal series representations of special unitary groups over local fields , 1984 .