ℓ-modular representations of unramified p-adic U(2,1)
暂无分享,去创建一个
[1] A. Mínguez,et al. Types modulo ℓ pour les formes intérieures de GLn sur un corps local non archimédien , 2014, 1404.0804.
[2] S. Stevens,et al. Block decomposition of the category of l-modular smooth representations of GL(n,F) and its inner forms , 2014, 1402.5349.
[3] A. Mínguez,et al. Représentations lisses modulo l de GL m (D) , 2011, 1110.1467.
[4] C. Blondel. Representation de Weil et beta-extensions , 2009, 1001.0129.
[5] V. Sécherre,et al. REPRÉSENTATIONS LISSES DE $\mathrm{GL}_{m}(\mathrm{D})$ IV : REPRÉSENTATIONS SUPERCUSPIDALES , 2008, Journal of the Institute of Mathematics of Jussieu.
[6] S. Stevens. The supercuspidal representations of p-adic classical groups , 2006, math/0607622.
[7] J. Dat. Finitude pour les représentations lisses de groupes p-adiques , 2006, Journal of the Institute of Mathematics of Jussieu.
[8] S. Stevens,et al. Representations lisses de GL(m,D), IV : representations supercuspidales , 2006, math/0607298.
[9] Ju-lee Kim. Supercuspidal representations: An exhaustion theorem , 2006, math/0607262.
[10] S. Stevens. Semisimple characters for p-adic classical groups , 2005 .
[11] Corinne Blondel. Quelques propriétés des paires couvrantes , 2005 .
[12] Jean-François Dat. ν-tempered representations of p-adic groups, I: l-adic case , 2005 .
[13] G. Hiss. Hermitian function fields, classical unitals, and representations of 3-dimensional unitary groups , 2004 .
[14] K. Waki,et al. Decomposition numbers of SU(3, q 2) , 2002 .
[15] Laurent Blasco. Description du dual admissible de U(2,1)(F) par la théorie des types de C. Bushnell et P. Kutzko , 2002 .
[16] R. Rouquier,et al. Catégories dérivées et variétés de Deligne-Lusztig , 2002, math/0201146.
[17] J. Yu. Construction of tame supercuspidal representations , 2001 .
[18] L. Morris. Level Zero G-Types , 1999, Compositio Mathematica.
[19] Ernst-Wilhelm Zink,et al. K-types for the tempered components of a p-adic general linear group (With an Appendix by P. Schneider, U. Stuhler: The definition of the tempered category) , 1999 .
[20] M. Vigneras. Induced R-representations of p-adic reductive groups , 1998 .
[21] CJ Bushnell,et al. Smooth representations of reductive p‐ADIC groups: structure theory via types , 1998 .
[22] N. Vavilov. REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE (London Mathematical Society Student Texts 21) , 1995 .
[23] G. Hiss,et al. Cuspidal Unipotent Brauer Characters , 1994 .
[24] L. Morris. Tamely ramified intertwining algebras , 1993 .
[25] C. Bushnell,et al. The admissible dual of GL(N) via compact open subgroups , 1993 .
[26] Jean Michel,et al. Representations of Finite Groups of Lie Type , 1991 .
[27] G. Lehrer,et al. Induced cuspidal representations and generalised Hecke rings , 1980 .
[28] Charles W. Curtis,et al. Representations of finite groups of Lie type , 1979 .
[29] G. Lusztig,et al. The characters of the finite unitary groups , 1977 .
[30] Marie-France Vignéras. Irreducible Modular Representations of a Reductive p-Adic Group and Simple Modules for Hecke Algebras , 2001 .
[31] M. Vigneras. On highest Whittaker Models and Integral Structures , 2001 .
[32] G. Hiss,et al. Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type , 1996 .
[33] C. Bushnell,et al. The admissible dual of ${\rm SL}(N)$. I , 1993 .
[34] M. Geck. Irreducible brauer characters of the 3-dimensional special unitary groups in non-defining characteristic ∗ , 1990 .
[35] D. Keys. Principal series representations of special unitary groups over local fields , 1984 .