An Explicit A Priori Estimate for a Finite Volume Approximation of Linear Advection on Non-Cartesian Grids

We propose an elementary proof of strong convergence for a finite volume approximation of nonstationary linear advection on arbitrary grids in two space dimensions. This proof is elementary in the sense that the basic a priori estimate uses only some discrete integrations by parts and the Cauchy--Schwarz inequality. Numerical results show that the estimate is probably nonoptimal.

[1]  Clint Dawson,et al.  Some Extensions Of The Local Discontinuous Galerkin Method For Convection-Diffusion Equations In Mul , 1999 .

[2]  Qun Lin Full Convergence for Hyperbolic Finite Elements , 2000 .

[3]  Benoît Perthame,et al.  Schémas d'équilibre pour des lois de conservation scalaires avec des termes sources raides , 2000 .

[4]  R. J. Diperna,et al.  Measure-valued solutions to conservation laws , 1985 .

[5]  Bernardo Cockburn,et al.  An error estimate for finite volume methods for multidimensional conservation laws , 1994 .

[6]  Bernardo Cockburn,et al.  Devising discontinuous Galerkin methods for non-linear hyperbolic conversation laws , 2001 .

[7]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[8]  Bernardo Cockburn,et al.  Error estimates for finite element methods for scalar conservation laws , 1996 .

[9]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[10]  Endre Süli,et al.  hp-Adaptive Discontinuous Galerkin Finite Element Methods for First-Order Hyperbolic Problems , 2001, SIAM J. Sci. Comput..

[11]  P. L. Roe,et al.  Optimum positive linear schemes for advection in two and three dimensions , 1992 .

[12]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[13]  Bruno Després,et al.  Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids , 2001 .

[14]  P. Roe,et al.  Compact advection schemes on unstructured grids , 1993 .

[15]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[16]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[17]  Sebastian Noelle,et al.  Convergence of higher order finite volume schemes on irregular grids , 1995, Adv. Comput. Math..

[18]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[19]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[20]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[21]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[22]  Todd E. Peterson,et al.  A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation , 1991 .

[23]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[24]  Anders Szepessy,et al.  Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions , 1991 .

[25]  Bernardo Cockburn,et al.  A Priori Error Estimates for Numerical Methods for Scalar Conservation Laws Part III: Multidimensional Flux-Splitting Monotone Schemes on Non-Cartesian Grids , 1998 .

[26]  R. LeVeque Numerical methods for conservation laws , 1990 .

[27]  Thierry Gallouët,et al.  Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh , 1993 .