A 135–170 GHz power amplifier in an advanced sige HBT technology

Summary form only given. High-power, broadband power amplifiers (PA) operating in the D-band (110-170 GHz) are essential towards implementation of broadband frequency multiplier chains at sub-mmWave frequencies. In this paper we present the design of a 3-stage power amplifier (PA) with 3-dB bandwidth of 35 GHz (135-170 GHz) and implemented in 130 nm SiGe BiCMOS technology. A staggered tuning approach where the peak gain of the individual or group of individual stages are tuned at offset frequencies is used for broadband operation. In the 135-170 GHz, the small signal gain for the PA is 14-17 dB and the saturated output power (Psat) varies from 5-8 dBm and the output referred 1 dB compression point (P1dB) varies from 1-6 dBm over this frequency range. The nominal dc power consumption of this PA is 320 mW with peak PAE of 1.6%. To our best knowledge, this is the highest bandwidth reported for silicon PAs in the D band.

[1]  Munkyo Seo,et al.  A 150 GHz Amplifier With 8 dB Gain and $+$6 dBm $P_{\rm sat}$ in Digital 65 nm CMOS Using Dummy-Prefilled Microstrip Lines , 2009, IEEE Journal of Solid-State Circuits.

[2]  Ullrich R. Pfeiffer,et al.  Towards 3D-imaging with low-cost SiGe-Technology at 160GHz , 2011, 2011 IEEE 9th International New Circuits and systems conference.

[3]  Neal R. Erickson,et al.  A Fast and Sensitive Submillimeter Waveguide Power Meter , 1999 .

[4]  P. Chevalier,et al.  160-GHz Power Amplifier Design in Advanced SiGe HBT Technologies With ${P}_{\rm sat}$ in Excess of 10 dBm , 2013, IEEE Transactions on Microwave Theory and Techniques.

[5]  E Öjefors,et al.  Active 220- and 325-GHz Frequency Multiplier Chains in an SiGe HBT Technology , 2011, IEEE Transactions on Microwave Theory and Techniques.

[6]  Yan Zhao,et al.  A 820GHz SiGe chipset for terahertz active imaging applications , 2011, 2011 IEEE International Solid-State Circuits Conference.

[7]  M. Seo,et al.  A 150 GHz Amplifier With 8 dB Gain and 6 dBm in Digital 65 nm CMOS Using Dummy-Prefilled Microstrip Lines , 2009 .

[8]  S.P. Voinigescu,et al.  165-GHz Transceiver in SiGe Technology , 2008, IEEE Journal of Solid-State Circuits.

[9]  P. Chevalier,et al.  80/160-GHz Transceiver and 140-GHz Amplifier in SiGe Technology , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[10]  C. Wipf,et al.  SiGe HBT technology with fT/fmax of 300GHz/500GHz and 2.0 ps CML gate delay , 2010, 2010 International Electron Devices Meeting.

[11]  E. Dacquay,et al.  Scaling of SiGe BiCMOS Technologies for Applications above 100 GHz , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[12]  U. R. Pfeiffer Sub-millimeter wave active imaging with silicon integrated circuits , 2011, 2011 International Conference on Infrared, Millimeter, and Terahertz Waves.

[13]  H. Schumacher,et al.  47–77 GHz and 70–155 GHz LNAs in SiGe BiCMOS technologies , 2012, 2012 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[14]  U.R. Pfeiffer,et al.  A 20 dBm Fully-Integrated 60 GHz SiGe Power Amplifier With Automatic Level Control , 2007, IEEE Journal of Solid-State Circuits.

[15]  Yong-Zhong Xiong,et al.  A D-Band Cascode Amplifier With 24.3 dB Gain and 7.7 dBm Output Power in 0.13 $\mu$m SiGe BiCMOS Technology , 2012, IEEE Microwave and Wireless Components Letters.

[16]  S. Moinian,et al.  VBIC95: An improved vertical, IC bipolar transistor model , 1995, Proceedings of Bipolar/Bicmos Circuits and Technology Meeting.

[17]  U. R. Pfeiffer Silicon CMOS/SiGe transceiver circuits for THz applications , 2012, 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[18]  M.A.T. Sanduleanu,et al.  A Wideband Millimeter-Wave Power Amplifier With 20 dB Linear Power Gain and +8 dBm Maximum Saturated Output Power , 2008, IEEE Journal of Solid-State Circuits.