Computation on Randomized Data

Cryptographic tools, such as secure computation or homomorphic encryption, are very computationally expensive. This makes their use for confidentiality protection of client’s data against an untrusted service provider uneconomical in most applications of cloud computing. In this paper we present techniques for randomizing data using light-weight operations and then securely outsourcing the computation to a server. We discuss how to formally assess the security of our approach and present linear programming as a case study.

[1]  Octavian Catrina,et al.  Secure Multiparty Linear Programming Using Fixed-Point Arithmetic , 2010, ESORICS.

[2]  Olvi L. Mangasarian Privacy-preserving horizontally partitioned linear programs , 2012, Optim. Lett..

[3]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[4]  Benny Pinkas,et al.  Fairplay - Secure Two-Party Computation System , 2004, USENIX Security Symposium.

[5]  Matthew Roughan,et al.  Hiccups on the road to privacy-preserving linear programming , 2009, WPES '09.

[6]  Jaideep Vaidya,et al.  Privacy-preserving linear programming , 2009, SAC '09.

[7]  Geoffrey Smith,et al.  On the Foundations of Quantitative Information Flow , 2009, FoSSaCS.

[8]  Debmalya Biswas,et al.  On the practical importance of communication complexity for secure multi-party computation protocols , 2009, SAC '09.

[9]  Eugene H. Spafford,et al.  Secure outsourcing of scientific computations , 2001, Adv. Comput..

[10]  Mikhail J. Atallah,et al.  Securely outsourcing linear algebra computations , 2010, ASIACCS '10.

[11]  Catuscia Palamidessi,et al.  Quantitative Notions of Leakage for One-try Attacks , 2009, MFPS.

[12]  Mikhail J. Atallah,et al.  Secure outsourcing of sequence comparisons , 2004, International Journal of Information Security.

[13]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[14]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[15]  Benny Pinkas,et al.  Secure Two-Party Computation is Practical , 2009, IACR Cryptol. ePrint Arch..

[16]  Gerardus Sierksma,et al.  Linear and integer programming - theory and practice , 1999, Pure and applied mathematics.

[17]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[18]  Benny Pinkas,et al.  FairplayMP: a system for secure multi-party computation , 2008, CCS.

[19]  Radu Sion,et al.  On securing untrusted clouds with cryptography , 2010, WPES '10.

[20]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[21]  Mikhail J. Atallah,et al.  Secure and Private Collaborative Linear Programming , 2006, 2006 International Conference on Collaborative Computing: Networking, Applications and Worksharing.

[22]  Tomas Toft Solving Linear Programs Using Multiparty Computation , 2009, Financial Cryptography.