Generalized ant programming in option pricing: determining implied volatilities based on American put options

Generalized ant programming is a new method inspired by the genetic programming approach as well as by ant systems. It is applicable to all problems in which the search space of feasible solutions consists of computer programs. We use generalized ant programming to derive analytical approximations for determining the implied volatility based on American put options. Using experimental data as well as huge validation data sets we can show that the generalized ant programming based formulas for calculating implied volatilities deliver accurate approximation results and outperform other approximations presented in the literature.

[1]  S. Ross,et al.  Option pricing: A simplified approach☆ , 1979 .

[2]  T. Day,et al.  The behavior of the volatility implicit in the prices of stock index options , 1988 .

[3]  Christian Keber Genetically Derived Approximations for Determining the Implied Volatility , 1999 .

[4]  Christian Keber,et al.  Option Valuation With Generalized Ant Programming , 2002, GECCO.

[5]  S. Beckers Standard deviations implied in option prices as predictors of future stock price variability , 1981 .

[6]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[7]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[8]  H. Johnson An Analytic Approximation for the American Put Price , 1983, Journal of Financial and Quantitative Analysis.

[9]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[10]  Robert E. Whaley,et al.  Intraday Price Change and Trading Volume Relations in the Stock and Stock Option Markets , 1990 .

[11]  Donald P. Chiras,et al.  The information content of option prices and a test of market efficiency , 1978 .

[12]  T. Day,et al.  Stock market volatility and the information content of stock index options , 1992 .

[13]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[14]  H. Johnson,et al.  The American Put Option Valued Analytically , 1984 .

[15]  Shu-Heng Chen,et al.  Hedging derivative securities with genetic programming , 1999, Intell. Syst. Account. Finance Manag..

[16]  Eduardo S. Schwartz,et al.  The Valuation of American Put Options , 1977 .

[17]  Giovanni Barone-Adesi,et al.  The valuation of American call options and the expected ex-dividend stock price decline , 1986 .

[18]  Bruce G. Resnick,et al.  Time Varying Volatilities and Calculation of the Weighted Implied Standard Deviation , 1993, Journal of Financial and Quantitative Analysis.

[19]  M. Dorigo,et al.  1 Positive Feedback as a Search Strategy , 1991 .

[20]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[21]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[22]  Don M. Chance A Generalized Simple Formula to Compute the Implied Volatility , 1996 .

[23]  Marco Dorigo,et al.  From Natural to Artificial Swarm Intelligence , 1999 .

[24]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[25]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[26]  J. BharadiaM.A.,et al.  A Quadratic Method for the Calculation of Implied Volatility Using the Garman–Kohlhagen Model , 1996 .

[27]  Christian Keber Genetisch ermittelte Approximationen zur Bestimmung der impliziten Volatilität , 1999 .

[28]  Hartmut Schmeck,et al.  An Ant Colony Optimization approach to dynamic TSP , 2001 .

[29]  Richard J. Rendleman,et al.  STANDARD DEVIATIONS OF STOCK PRICE RATIOS IMPLIED IN OPTION PRICES , 1976 .

[30]  M. Brenner,et al.  A Simple Formula to Compute the Implied Standard Deviation , 1988 .

[31]  Gary J. Koehler,et al.  The Calculation of Implied Variances from the Black‐Scholes Model: A Note , 1982 .

[32]  C. Keber Evolutionary Computation in Option Pricing: Determining Implied Volatilities Based on American Put Options , 2002 .

[33]  Chi-Wen Jevons Lee,et al.  Option Pricing Via Genetic Programming , 2002 .

[34]  C. Corrado,et al.  A note on a simple, accurate formula to compute implied standard deviations , 1996 .

[35]  Alfred V. Aho,et al.  The Theory of Parsing, Translation, and Compiling , 1972 .

[36]  W. Schwert Stock market volatility and the crash of 87 , 1990 .