Tensor-Based Large-Scale Blind System Identification Using Segmentation

Many real-life signals can be described in terms of much fewer parameters than the actual number of samples. Such compressible signals can often be represented very compactly with low-rank matrix and tensor models. The authors have adopted this strategy to enable large-scale instantaneous blind source separation. In this paper, we generalize the approach to the blind identification of large-scale convolutive systems. In particular, we apply the same idea to the system coefficients of finite impulse response systems. This allows us to reformulate blind system identification as a structured tensor decomposition. The tensor is obtained by applying a deterministic tensorization technique called segmentation on the observed output data. Exploiting the low-rank structure of the system coefficients enables a unique identification of the system and estimation of the inputs. We obtain a new type of deterministic uniqueness conditions. Moreover, the compactness of the low-rank models allows one to solve large-scale problems. We illustrate our method for direction-of-arrival estimation in large-scale antenna arrays and neural spike sorting in high-density microelectrode arrays.

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  Lieven De Lathauwer,et al.  Canonical Polyadic Decomposition of Third-Order Tensors: Reduction to Generalized Eigenvalue Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[3]  A. V. D. Veen Algebraic methods for deterministic blind beamforming , 1998, Proc. IEEE.

[4]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[5]  Lieven De Lathauwer,et al.  Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-(Lr, Lr, 1) Terms , 2011, SIAM J. Matrix Anal. Appl..

[6]  M S Lewicki,et al.  A review of methods for spike sorting: the detection and classification of neural action potentials. , 1998, Network.

[7]  Nico Vervliet,et al.  Breaking the Curse of Dimensionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing in big data analysis , 2014, IEEE Signal Processing Magazine.

[8]  G. Yin,et al.  System Identification with Quantized Observations , 2010 .

[9]  Lieven De Lathauwer,et al.  Tensor Decompositions With Several Block-Hankel Factors and Application in Blind System Identification , 2017, IEEE Transactions on Signal Processing.

[10]  Lieven De Lathauwer,et al.  Optimization-Based Algorithms for Tensor Decompositions: Canonical Polyadic Decomposition, Decomposition in Rank-(Lr, Lr, 1) Terms, and a New Generalization , 2013, SIAM J. Optim..

[11]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[12]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[13]  Lieven De Lathauwer,et al.  Generic Uniqueness Conditions for the Canonical Polyadic Decomposition and INDSCAL , 2014, SIAM J. Matrix Anal. Appl..

[14]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[15]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[16]  Lieven De Lathauwer,et al.  A novel deterministic method for large-scale blind source separation , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[17]  Lieven De Lathauwer,et al.  Block Component Analysis, a New Concept for Blind Source Separation , 2012, LVA/ICA.

[18]  M. Viberg,et al.  Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..

[19]  Lieven De Lathauwer,et al.  Structured Data Fusion , 2015, IEEE Journal of Selected Topics in Signal Processing.

[20]  D Farina,et al.  Blind source identification from the multichannel surface electromyogram , 2014, Physiological measurement.

[21]  Lieven De Lathauwer,et al.  Blind Multichannel Deconvolution and Convolutive Extensions of Canonical Polyadic and Block Term Decompositions , 2017, IEEE Transactions on Signal Processing.

[22]  Lieven De Lathauwer,et al.  Blind Deconvolution of DS-CDMA Signals by Means of Decomposition in Rank-$(1,L,L)$ Terms , 2008, IEEE Transactions on Signal Processing.

[23]  Lieven De Lathauwer,et al.  A tensor-based method for large-scale blind system identification using segmentation , 2016, 2016 24th European Signal Processing Conference (EUSIPCO).

[24]  Lieven De Lathauwer,et al.  Löwner-Based Blind Signal Separation of Rational Functions With Applications , 2016, IEEE Transactions on Signal Processing.

[25]  Nico Vervliet,et al.  Tensorlab 3.0 — Numerical optimization strategies for large-scale constrained and coupled matrix/tensor factorization , 2016, 2016 50th Asilomar Conference on Signals, Systems and Computers.

[26]  L. Lathauwer,et al.  Canonical polyadic decomposition of third-order tensors: relaxed uniqueness conditions and algebraic algorithm , 2015, 1501.07251.

[27]  A. Hierlemann,et al.  Blind source separation for spike sorting of high density microelectrode array recordings , 2011, 2011 5th International IEEE/EMBS Conference on Neural Engineering.

[28]  Nikos D. Sidiropoulos,et al.  Tensor Decomposition for Signal Processing and Machine Learning , 2016, IEEE Transactions on Signal Processing.

[29]  Nico Vervliet,et al.  A Randomized Block Sampling Approach to Canonical Polyadic Decomposition of Large-Scale Tensors , 2016, IEEE Journal of Selected Topics in Signal Processing.

[30]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[31]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[32]  Lieven De Lathauwer,et al.  Block component analysis , 2011 .

[33]  Lieven De Lathauwer,et al.  Stochastic and Deterministic Tensorization for Blind Signal Separation , 2015, LVA/ICA.

[34]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[35]  R. Oostenveld,et al.  A MEMS-based flexible multichannel ECoG-electrode array , 2009, Journal of neural engineering.

[36]  Alexander Bertrand,et al.  Distributed Signal Processing for Wireless EEG Sensor Networks , 2015, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[37]  Karim Abed-Meraim,et al.  Blind system identification , 1997, Proc. IEEE.

[38]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[39]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank- (Lr, n, Lr, n, 1) Terms - Part II: Algorithms , 2015, SIAM J. Matrix Anal. Appl..

[40]  Deepa Kundur,et al.  Blind Image Deconvolution , 2001 .

[41]  Lieven De Lathauwer,et al.  A Tensor-Based Method for Large-Scale Blind Source Separation Using Segmentation , 2017, IEEE Transactions on Signal Processing.

[42]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..

[43]  Lieven De Lathauwer,et al.  Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank-(Lr, n, Lr, n, 1) Terms - Part I: Uniqueness , 2015, SIAM J. Matrix Anal. Appl..

[44]  Nikos D. Sidiropoulos,et al.  Parallel Randomly Compressed Cubes : A scalable distributed architecture for big tensor decomposition , 2014, IEEE Signal Processing Magazine.