Mining brain imaging and genetics data via structured sparse learning

[1]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[2]  Jeffrey C Barrett,et al.  Haploview: Visualization and analysis of SNP genotype data. , 2009, Cold Spring Harbor protocols.

[3]  Jonathan E. Taylor,et al.  Interpretable whole-brain prediction analysis with GraphNet , 2013, NeuroImage.

[4]  F. Bushman,et al.  Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. , 2013, Biostatistics.

[5]  Hao Yu,et al.  State of the Art in Parallel Computing with R , 2009 .

[6]  Mert R. Sabuncu,et al.  The Relevance Voxel Machine (RVoxM): A Self-Tuning Bayesian Model for Informative Image-Based Prediction , 2012, IEEE Transactions on Medical Imaging.

[7]  Mert R. Sabuncu,et al.  Event time analysis of longitudinal neuroimage data , 2014, NeuroImage.

[8]  Eric P. Xing,et al.  A multivariate regression approach to association analysis of a quantitative trait network , 2008, Bioinform..

[9]  Paul M. Thompson,et al.  Imaging genetics via sparse canonical correlation analysis , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  Shannon L. Risacher,et al.  Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort , 2012, Bioinform..

[12]  Ben Taskar,et al.  Generative-Discriminative Basis Learning for Medical Imaging , 2012, IEEE Transactions on Medical Imaging.

[13]  Michael W. Weiner,et al.  Amyloid pathway-based candidate gene analysis of [11C]PiB-PET in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort , 2011, Brain Imaging and Behavior.

[14]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[15]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[16]  Maria De Iorio,et al.  Fregene: Simulation of realistic sequence-level data in populations and ascertained samples , 2008, BMC Bioinformatics.

[17]  Mark E. Schmidt,et al.  The Alzheimer's Disease Neuroimaging Initiative: Progress report and future plans , 2010, Alzheimer's & Dementia.

[18]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[19]  Dimitri Van De Ville,et al.  Structured sparse deconvolution for paradigm free mapping of functional MRI data , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[20]  Daniela M Witten,et al.  Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data , 2009, Statistical applications in genetics and molecular biology.

[21]  P. Thompson,et al.  Multilocus Genetic Analysis of Brain Images , 2011, Front. Gene..

[22]  Shannon L. Risacher,et al.  Multimodal Neuroimaging Predictors for Cognitive Performance Using Structured Sparse Learning , 2012, MBIA.

[23]  J. Morris,et al.  The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals , 2008, Cerebral cortex.

[24]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[25]  A. Dale,et al.  Multi-modal imaging predicts memory performance in normal aging and cognitive decline , 2010, Neurobiology of Aging.

[26]  Andrew J. Saykin,et al.  Identifying the Neuroanatomical Basis of Cognitive Impairment in Alzheimer's Disease by Correlation- and Nonlinearity-Aware Sparse Bayesian Learning , 2014, IEEE Transactions on Medical Imaging.

[27]  Friedrich Leisch,et al.  Editorial Porting R to Darwin/x11 and Mac Os X Mac Os X Application Environments User Experience Porting Problems Rpvm: Cluster Statistical Computing in R , 2022 .

[28]  J. Morris,et al.  Clinical core of the Alzheimer's disease neuroimaging initiative: Progress and plans , 2010, Alzheimer's & Dementia.

[29]  Jason H. Moore,et al.  Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans , 2010, Alzheimer's & Dementia.

[30]  C. Hoggart,et al.  Sequence-Level Population Simulations Over Large Genomic Regions , 2007, Genetics.

[31]  Chris H. Q. Ding,et al.  Towards Structural Sparsity: An Explicit l2/l0 Approach , 2010, ICDM.

[32]  Clifford R. Jack,et al.  Predicting Clinical Scores from Magnetic Resonance Scans in Alzheimer's Disease , 2010, NeuroImage.

[33]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[34]  Vince D. Calhoun,et al.  Group sparse canonical correlation analysis for genomic data integration , 2013, BMC Bioinformatics.

[35]  Michael I. Jordan,et al.  Multi-task feature selection , 2006 .

[36]  Chengjie Xiong,et al.  Multiplexed Immunoassay Panel Identifies Novel CSF Biomarkers for Alzheimer's Disease Diagnosis and Prognosis , 2011, PloS one.

[37]  Eric P. Xing,et al.  Multi-population GWA mapping via multi-task regularized regression , 2010, Bioinform..

[38]  Bertrand Thirion,et al.  Multiscale Mining of fMRI Data with Hierarchical Structured Sparsity , 2012, SIAM J. Imaging Sci..

[39]  Marie Chupin,et al.  Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging , 2009, NeuroImage.

[40]  R. Tibshirani,et al.  A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.

[41]  Daoqiang Zhang,et al.  Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers , 2012, PloS one.

[42]  Xi Chen,et al.  An Efficient Optimization Algorithm for Structured Sparse CCA, with Applications to eQTL Mapping , 2011, Statistics in Biosciences.

[43]  Mark E. Schmidt,et al.  The Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception , 2012, Alzheimer's & Dementia.

[44]  Akram Bakkour,et al.  The cortical signature of prodromal AD , 2009, Neurology.

[45]  Feiping Nie,et al.  Efficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization , 2010, NIPS.

[46]  Michael Weiner,et al.  Hippocampal Surface Mapping of Genetic Risk Factors in AD via Sparse Learning Models , 2011, MICCAI.

[47]  Shannon L. Risacher,et al.  Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer's disease , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  Michael Weiner,et al.  Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort , 2010, NeuroImage.

[49]  Thomas E. Nichols,et al.  Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach , 2010, NeuroImage.

[50]  D. Tritchler,et al.  Sparse Canonical Correlation Analysis with Application to Genomic Data Integration , 2009, Statistical applications in genetics and molecular biology.

[51]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[52]  Shannon L. Risacher,et al.  Identifying AD-Sensitive and Cognition-Relevant Imaging Biomarkers via Joint Classification and Regression , 2011, MICCAI.

[53]  Vince D. Calhoun,et al.  Correspondence between fMRI and SNP data by group sparse canonical correlation analysis , 2014, Medical Image Anal..

[54]  Brian B. Avants,et al.  Dementia induces correlated reductions in white matter integrity and cortical thickness: A multivariate neuroimaging study with sparse canonical correlation analysis , 2010, NeuroImage.

[55]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[56]  Daoqiang Zhang,et al.  Multimodal classification of Alzheimer's disease and mild cognitive impairment , 2011, NeuroImage.

[57]  Gaël Varoquaux,et al.  Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering , 2012, ICML.

[58]  Moo K. Chung,et al.  General multivariate linear modeling of surface shapes using SurfStat , 2010, NeuroImage.

[59]  Gaël Varoquaux,et al.  Total Variation Regularization for fMRI-Based Prediction of Behavior , 2011, IEEE Transactions on Medical Imaging.

[60]  Michael W. Weiner,et al.  APOE and BCHE as modulators of cerebral amyloid deposition: a florbetapir PET genome-wide association study , 2013, Molecular Psychiatry.

[61]  Alessandro Alimonti,et al.  Possible relationship between Al/ferritin complex and Alzheimer's disease. , 2013, Clinical biochemistry.

[62]  Andrew J. Saykin,et al.  Data synthesis and method evaluation for brain imaging genetics , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[63]  Shannon L. Risacher,et al.  Network-Guided Sparse Learning for Predicting Cognitive Outcomes from MRI Measures , 2013, MBIA.

[64]  Endong Wang,et al.  Intel Math Kernel Library , 2014 .

[65]  Na Li,et al.  Simple Parallel Statistical Computing in R , 2007 .

[66]  Li Shen,et al.  Baseline MRI Predictors of Conversion from MCI to Probable AD in the ADNI Cohort , 2009, Current Alzheimer research.

[67]  Shannon L. Risacher,et al.  Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance , 2011, 2011 International Conference on Computer Vision.

[68]  Lorenzo Rosasco,et al.  Elastic-net regularization in learning theory , 2008, J. Complex..

[69]  Niall Gaffney,et al.  Performance evaluation of R with Intel Xeon Phi coprocessor , 2013, 2013 IEEE International Conference on Big Data.

[70]  Allan R. Jones,et al.  Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals Species-Specific Molecular Signatures , 2012, Cell.

[71]  W. Jagust,et al.  The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core , 2010, Alzheimer's & Dementia.

[72]  Marie Chupin,et al.  Automatic classi fi cation of patients with Alzheimer ' s disease from structural MRI : A comparison of ten methods using the ADNI database , 2010 .