Symmetries of statistics on lattice paths between two boundaries
暂无分享,去创建一个
[1] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[2] Emeric Deutsch,et al. An involution on Dyck paths and its consequences , 1999, Discret. Math..
[3] Nicholas A. Loehr,et al. Conjectured Statistics for the Higher q, t-Catalan Sequences , 2005, Electron. J. Comb..
[4] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[5] Carlo Vanderzande,et al. Lattice Models of Polymers , 1998 .
[6] Frank Sottile,et al. Tableau Switching: Algorithms and Applications , 1996, J. Comb. Theory, Ser. A.
[7] Philippe Flajolet,et al. Basic analytic combinatorics of directed lattice paths , 2002, Theor. Comput. Sci..
[8] Christian Krattenthaler. Watermelon configurations with wall interaction: exact and asymptotic results , 2005 .
[9] Michelle L. Wachs,et al. Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators , 1985, J. Comb. Theory, Ser. A.
[10] Ira M. Gessel,et al. Lattice Paths and Faber Polynomials , 1997 .
[11] Tomoki Nakamigawa,et al. A generalization of diagonal flips in a convex polygon , 2000, Theor. Comput. Sci..
[12] Sergi Elizalde. A bijection between 2-triangulations and pairs of non-crossing Dyck paths , 2007, J. Comb. Theory, Ser. A.
[13] H. Crapo,et al. The Tutte polynomial , 1969, 1707.03459.
[14] -nilpotent -ideals in () having a fixed class of nilpotence: combinatorics and enumeration , 2002 .
[15] Daniel J. Kleitman,et al. Strong Versions of Sperner's Theorem , 1976, J. Comb. Theory, Ser. A.
[16] Luis Serrano,et al. Maximal Fillings of Moon Polyominoes, Simplicial Complexes, and Schubert Polynomials , 2010, Electron. J. Comb..
[17] J. W. Essam,et al. Return polynomials for non-intersecting paths above a surface on the directed square lattice , 2001 .
[18] Jacobus H. Koolen,et al. On Line Arrangements in the Hyperbolic Plane , 2002, Eur. J. Comb..
[19] W. T. Tutte,et al. A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.
[20] Marc Noy,et al. Lattice path matroids: enumerative aspects and Tutte polynomials , 2003, J. Comb. Theory, Ser. A.
[21] Carlos M. Nicolás. Another bijection between $2$-triangulations and pairs of non-crossing Dyck paths , 2009 .
[22] Federico Ardila. The Catalan matroid , 2003, J. Comb. Theory, Ser. A.
[23] Ira M. Gessel,et al. A Factorization for Formal Laurent Series and Lattice Path Enumeration , 1980, J. Comb. Theory A.
[24] Jakob Jonsson,et al. Generalized triangulations and diagonal-free subsets of stack polyominoes , 2005, J. Comb. Theory, Ser. A.
[25] Emeric Deutsch,et al. A bijection on Dyck paths and its consequences , 1998, Discret. Math..
[26] Mireille Bousquet-Mélou,et al. The Number of Intervals in the m-Tamari Lattices , 2011, Electron. J. Comb..
[27] John Irving,et al. The number of lattice paths below a cyclically shifting boundary , 2009, J. Comb. Theory, Ser. A.
[28] Robin J. Chapman,et al. Simple formulas for lattice paths avoiding certain periodic staircase boundaries , 2009, J. Comb. Theory, Ser. A.
[29] K. Humphreys. A history and a survey of lattice path enumeration , 2010 .
[30] F. Bergeron,et al. Higher Trivariate Diagonal Harmonics via generalized Tamari Posets , 2011, 1105.3738.
[31] T. V. Narayana,et al. Lattice Path Combinatorics With Statistical Applications , 1979 .
[32] Marc Renault,et al. Lost (and Found) in Translation: André's Actual Method and Its Application to the Generalized Ballot Problem , 2008, Am. Math. Mon..
[33] Michael E. Fisher,et al. Walks, walls, wetting, and melting , 1984 .
[34] Philippe Duchon,et al. On the enumeration and generation of generalized Dyck words , 2000, Discret. Math..