Control of flux by narrow passages and hidden targets in cellular biology

Critical biological processes, such as synaptic plasticity and transmission, activation of genes by transcription factors, or double-strained DNA break repair, are controlled by diffusion in structures that have both large and small spatial scales. These may be small binding sites inside or on the surface of the cell, or narrow passages between subcellular compartments. The great disparity in spatial scales is the key to controlling cell function by structure. We report here recent progress on resolving analytical and numerical difficulties in extracting properties from experimental data, from biophysical models, and from Brownian dynamics simulations of diffusion in multi-scale structures. This progress is achieved by developing an analytical approximation methodology for solving the model equations. The reported results are applied to analysis and simulations of subcellular processes and to the quantification of their biological functions.

[1]  Z. Schuss,et al.  The narrow escape problem for diffusion in cellular microdomains , 2007, Proceedings of the National Academy of Sciences.

[2]  David Holcman,et al.  Erratum: Narrow escape through a funnel and effective diffusion on a crowded membrane [Phys. Rev. E 84, 021906 (2011)] , 2012 .

[3]  L. Arnold Stochastic Differential Equations: Theory and Applications , 1992 .

[4]  David Holcman,et al.  The Narrow Escape Problem in a Flat Cylindrical Microdomain with Application to Diffusion in the Synaptic Cleft , 2011, Multiscale Model. Simul..

[5]  E. R. Rang Narrow Escape. , 1965, Science.

[6]  M. Saxton,et al.  Lateral diffusion in an archipelago. Effects of impermeable patches on diffusion in a cell membrane. , 1982, Biophysical journal.

[7]  Michael J. Ward,et al.  Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps , 2005, European Journal of Applied Mathematics.

[8]  M. Ehlers,et al.  Spine Microdomains for Postsynaptic Signaling and Plasticity , 2022 .

[9]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[10]  David Holcman,et al.  Brownian Motion in Dire Straits , 2012, Multiscale Model. Simul..

[11]  Michael J. Ward,et al.  Strong Localized Perturbations of Eigenvalue Problems , 1993, SIAM J. Appl. Math..

[12]  Paul C Bressloff,et al.  A dynamic corral model of receptor trafficking at a synapse. , 2009, Biophysical journal.

[13]  J. Henley,et al.  Lateral Diffusion Drives Constitutive Exchange of AMPA Receptors at Dendritic Spines and Is Regulated by Spine Morphology , 2006, The Journal of Neuroscience.

[14]  Otto Dideberg,et al.  Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Z. Schuss,et al.  Diffusion escape through a cluster of small absorbing windows , 2008 .

[16]  A. Kusumi,et al.  Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. , 1993, Biophysical journal.

[17]  B. Eisenberg,et al.  Steric selectivity in Na channels arising from protein polarization and mobile side chains. , 2007, Biophysical journal.

[18]  Emilio Molina,et al.  Summary and Discussion , 2014 .

[19]  P. Hänggi,et al.  Detectable inertial effects on Brownian transport through narrow pores , 2012, 1202.4362.

[20]  David Holcman,et al.  Quantifying neurite growth mediated by interactions among secretory vesicles, microtubules, and actin networks. , 2009, Biophysical journal.

[21]  T. Pöschel,et al.  Stochastic Processes in Physics, Chemistry, and Biology , 2000 .

[22]  J. Bourne,et al.  Balancing structure and function at hippocampal dendritic spines. , 2008, Annual review of neuroscience.

[23]  Daniel Choquet,et al.  Control of the Postsynaptic Membrane Viscosity , 2009, The Journal of Neuroscience.

[24]  Z. Schuss,et al.  Narrow Escape, Part II: The Circular Disk , 2004, math-ph/0412050.

[25]  Z. Schuss,et al.  Diffusion through a cluster of small windows and flux regulation in microdomains , 2008 .

[26]  Paul Carus,et al.  The Derivation of , 1908 .

[27]  David Holcman,et al.  Diffusion laws in dendritic spines , 2011, Journal of mathematical neuroscience.

[28]  M. Saxton,et al.  Single-particle tracking: effects of corrals. , 1995, Biophysical journal.

[29]  D. Holcman,et al.  Estimating the synaptic current in a multiconductance AMPA receptor model. , 2010, Biophysical journal.

[30]  T. Bourgeron,et al.  SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism , 2011, Molecular Psychiatry.

[31]  Michael J. Ward,et al.  Summing Logarithmic Expansions for Singularly Perturbed Eigenvalue Problems , 1993, SIAM J. Appl. Math..

[32]  M. Dalva,et al.  Cell adhesion molecules: signalling functions at the synapse , 2007, Nature Reviews Neuroscience.

[33]  Bernardo L Sabatini,et al.  Neuronal Activity Regulates Diffusion Across the Neck of Dendritic Spines , 2005, Science.

[34]  M Edidin,et al.  Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. , 1991, Science.

[35]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Z. Schuss,et al.  Narrow escape and leakage of Brownian particles. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  R. Eisenberg,et al.  Narrow Escape, Part I , 2004, math-ph/0412048.

[38]  K. Suzuki,et al.  Binding of cross-linked glycosylphosphatidylinositol-anchored proteins to discrete actin-associated sites and cholesterol-dependent domains. , 2001, Biophysical journal.

[39]  D Holcman,et al.  Diffusion in a dendritic spine: the role of geometry. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  M. Segal,et al.  Dendritic spine density and LTP induction in cultured hippocampal slices. , 1997, Journal of neurophysiology.

[41]  M. Segal,et al.  Morphological plasticity in dendritic spines of cultured hippocampal neurons , 1996, Neuroscience.

[42]  M Segal,et al.  Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Z. Schuss,et al.  Escape Through a Small Opening: Receptor Trafficking in a Synaptic Membrane , 2004 .

[44]  K. Jacobson,et al.  Single-particle tracking: applications to membrane dynamics. , 1997, Annual review of biophysics and biomolecular structure.

[45]  R. Nicoll,et al.  AMPA Receptor Trafficking at Excitatory Synapses , 2003, Neuron.

[46]  D Holcman,et al.  Threshold activation for stochastic chemical reactions in microdomains. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Michael J. Ward,et al.  An Asymptotic Analysis of the Mean First Passage Time for Narrow Escape Problems: Part II: The Sphere , 2010, Multiscale Model. Simul..

[48]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[49]  David Holcman,et al.  Survival probability of diffusion with trapping in cellular neurobiology. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  J. Lear,et al.  Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. , 1997, Biophysical journal.

[51]  Z. Schuss,et al.  Brownian needle in dire straits: stochastic motion of a rod in very confined narrow domains. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  M. Saxton,et al.  Lateral diffusion in an archipelago. Dependence on tracer size. , 1993, Biophysical journal.

[53]  M. Saxton,et al.  Lateral diffusion in an archipelago. Single-particle diffusion. , 1993, Biophysical journal.

[54]  David Holcman,et al.  Gated narrow escape time for molecular signaling. , 2009, Physical review letters.

[55]  Hillel Adesnik,et al.  Photoinactivation of Native AMPA Receptors Reveals Their Real-Time Trafficking , 2005, Neuron.

[56]  Z. Schuss,et al.  Narrow escape through a funnel and effective diffusion on a crowded membrane. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  O. Medalia,et al.  Chromatin Organization and Radio Resistance in the Bacterium Gemmata obscuriglobus , 2008, Journal of bacteriology.

[58]  Daniel Coombs,et al.  Diffusion on a Sphere with Localized Traps: Mean First Passage Time, Eigenvalue Asymptotics, and Fekete Points , 2009, SIAM J. Appl. Math..

[59]  Z. Schuss,et al.  0 41 20 89 v 1 2 5 D ec 2 00 4 Stochastic Chemical Reactions in Micro-domains , 2008 .

[60]  E. V. D. Velde,et al.  The onset of thermal runaway in partially insulated or cooled reactors , 1992 .

[61]  T. Südhof Neuroligins and neurexins link synaptic function to cognitive disease , 2008, Nature.

[62]  N. Rouach,et al.  Synapse Geometry and Receptor Dynamics Modulate Synaptic Strength , 2011, PloS one.

[63]  Z. Schuss,et al.  Narrow Escape, Part III: Non-Smooth Domains and Riemann Surfaces , 2006 .

[64]  Dane M. Chetkovich,et al.  Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms , 2000, Nature.

[65]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[66]  Paul C Bressloff,et al.  Biophysical Model of AMPA Receptor Trafficking and Its Regulation during Long-Term Potentiation/Long-Term Depression , 2006, The Journal of Neuroscience.

[67]  David Holcman,et al.  Dynamic regulation of spine–dendrite coupling in cultured hippocampal neurons , 2004, The European journal of neuroscience.

[68]  Charles Nicholson,et al.  Diffusion and related transport mechanisms in brain tissue , 2001 .

[69]  R. Malenka,et al.  AMPA receptor trafficking and synaptic plasticity. , 2002, Annual review of neuroscience.

[70]  Tsutomu Hashikawa,et al.  Retrograde modulation of presynaptic release probability through signaling mediated by PSD-95–neuroligin , 2007, Nature Neuroscience.

[71]  D A Lauffenburger,et al.  Analysis of intracellular receptor/ligand sorting. Calculation of mean surface and bulk diffusion times within a sphere. , 1986, Biophysical journal.

[72]  David Holcman,et al.  Modeling synaptic dynamics driven by receptor lateral diffusion. , 2006, Biophysical journal.

[73]  I. Kupka,et al.  Some questions related to modeling in cellular biology , 2010 .

[74]  Abraham Nitzan,et al.  Comparison of Dynamic Lattice Monte Carlo Simulations and the Dielectric Self-Energy Poisson-Nernst-Planck Continuum Theory for Model Ion Channels , 2004 .

[75]  P. Bressloff,et al.  Stochastic models of intracellular transport , 2013 .

[76]  Susan M. Gasser,et al.  Nuclear Geometry and Rapid Mitosis Ensure Asymmetric Episome Segregation in Yeast , 2011, Current Biology.

[77]  R. Eisenberg,et al.  Charges, currents, and potentials in ionic channels of one conformation. , 1993, Biophysical journal.

[78]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[79]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[80]  Akihiro Kusumi,et al.  Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. , 2005, Annual review of biophysics and biomolecular structure.

[81]  Amit Singer,et al.  Activation through a Narrow Opening , 2006, SIAM J. Appl. Math..

[82]  D Holcman,et al.  Calcium dynamics in dendritic spines, modeling and experiments. , 2005, Cell calcium.

[83]  M. Sheetz,et al.  Glycoprotein motility and dynamic domains in fluid plasma membranes. , 1993, Annual review of biophysics and biomolecular structure.

[84]  A. Triller,et al.  The role of receptor diffusion in the organization of the postsynaptic membrane , 2003, Nature Reviews Neuroscience.

[85]  David Holcman,et al.  Using default constraints of the spindle assembly checkpoint to estimate the associated chemical rates , 2012, BMC biophysics.

[86]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[87]  M. Saraniti,et al.  Computational Issues in Modeling Ion Transport in Biological Channels: Self-Consistent Particle-Based Simulations , 2003 .

[88]  Association Rates of Diffusion-Controlled Reactions in Two Dimensions , 1985 .

[89]  L. Pontryagin,et al.  Noise in nonlinear dynamical systems: Appendix: On the statistical treatment of dynamical systems , 1989 .

[90]  K. Harris,et al.  Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[91]  L. Xu,et al.  Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions. , 1999, Biophysical journal.

[92]  Zeev Schuss,et al.  Equilibrium and Recrossings of the Transition State: What Can Be Learned from Diffusion? , 2010 .

[93]  A. Minsky,et al.  Information content and complexity in the high-order organization of DNA. , 2004, Annual review of biophysics and biomolecular structure.

[94]  Roberto Malinow,et al.  AMPA receptor trafficking and long-term potentiation. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[95]  Effect of Boundary Condition Fluctuations on Smoluchowski Reaction Rates: Dedicated to Lutz Schimansky-Geier, half a century wise , 2000 .

[96]  G. Barton The Mathematics of Diffusion 2nd edn , 1975 .

[97]  Eyal Shimoni,et al.  Ringlike Structure of the Deinococcus radiodurans Genome: A Key to Radioresistance? , 2003, Science.

[98]  Sebastian Pascarelle,et al.  Unusual spectral energy distribution of a galaxy previously reported to be at redshift 6.68 , 2000, Nature.

[99]  Martin Burger,et al.  Inverse Problems Related to Ion Channel Selectivity , 2007, SIAM J. Appl. Math..