Accelerate weighted GMRES by augmenting error approximations

By augmenting error approximations at every restart cycle, this paper presents an accelerating strategy for restarted weighted generalized minimum residual (GMRES) method. We show that the procedure can effectively correct the occurrence of small skip D-angles, which indicates a slow convergent phase. Numerical results show that the new method converges much regular and faster than the weighted GMRES method. Finally, comparisons are made between the new and the recently proposed LGMRES methods.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[3]  Valeria Simoncini,et al.  On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..

[4]  Elizabeth R. Jessup,et al.  A Technique for Accelerating the Convergence of Restarted GMRES , 2005, SIAM J. Matrix Anal. Appl..

[5]  Gui-Ding Gu,et al.  Restarted GMRES augmented with harmonic Ritz vectors for shifted linear systems , 2005, Int. J. Comput. Math..

[6]  John G. Lewis,et al.  Sparse matrix test problems , 1982, SGNM.

[7]  Jack Dongarra,et al.  A Test Matrix Collection for Non-Hermitian Eigenvalue Problems , 1997 .

[8]  Azeddine Essai Weighted FOM and GMRES for solving nonsymmetric linear systems , 2004, Numerical Algorithms.

[9]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[10]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[11]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[12]  Y. Saad Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..

[13]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[14]  Zhi-Hao Cao,et al.  A note on weighted FOM and GMRES for solving nonsymmetric linear systems , 2004, Appl. Math. Comput..