Stabilized finite element methods with shock capturing for advection–diffusion problems

Abstract Stabilized FEM of streamline-diffusion type for advection–diffusion problems may exhibit local oscillations in crosswind direction(s). As a remedy, a shock-capturing variant of such stabilized schemes is considered as an additional consistent (but nonlinear) stabilization. We prove existence of discrete solutions. Then we present some a priori and a posteriori estimates. Finally we address the efficient solution of the arising nonlinear discrete problems.

[1]  Giancarlo Sangalli,et al.  Global and Local Error Analysis for the Residual-Free Bubbles Method Applied to Advection-Dominated Problems , 2000, SIAM J. Numer. Anal..

[2]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[3]  R. Codina Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .

[4]  Anders Szepessy,et al.  Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions , 1989 .

[5]  A. H. Schatz,et al.  Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .

[6]  H. Elman,et al.  Iterative methods for stabilized discrete convection-diffusion problems , 2000 .

[7]  Giancarlo Sangalli,et al.  A robust a posteriori estimator for the Residual-free Bubbles method applied to advection-diffusion problems , 2001, Numerische Mathematik.

[8]  R. B. Kellogg,et al.  Uniqueness in the Schauder fixed point theorem , 1976 .

[9]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[10]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[11]  J. Maître,et al.  A posteriori error estimates in finite element methods for general Friedrichs' systems , 2000 .

[12]  Howard C. Elman,et al.  Modified streamline diffusion schemes for convection-diffusion problems , 1999 .

[13]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[14]  G. Lube An Asymptotically Fitted Finite Element Method for Convection Dominated Convection-Diffusion-Reaction Problems , 1992 .

[15]  Ramon Codina,et al.  Finite element implementation of two-equation and algebraic stress turbulence models for steady incompressible flows , 1999 .

[16]  Rolf Rannacher,et al.  Pointwise superconvergence of the streamline diffusion finite-element method , 1996 .

[17]  Ramon Codina,et al.  A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation , 1993 .

[18]  L. Franca,et al.  On an Improved Unusual Stabilized Finite Element Method for theAdvective-Reactive-Diffusive Equation , 1999 .

[19]  Gert Lube,et al.  Stabilized Galerkin finite element methods for convection dominated and incompressible flow problems , 1994 .

[20]  Ben Polman,et al.  Oscillation Absorption Finite Element Methods for Convection-Diffusion Problems , 1996, SIAM J. Sci. Comput..

[21]  Gert Lube,et al.  Stabilized Galerkin methods and layer-adapted grids for elliptic problems , 1998 .