Proof of conjectures on adjacency eigenvalues of graphs

Abstract Let G be a simple graph of order n with t triangle(s). Also let λ 1 ( G ) , λ 2 ( G ) , … , λ n ( G ) be the eigenvalues of the adjacency matrix of graph G . X. Yong [X. Yong, On the distribution of eigenvalues of a simple undirected graph, Linear Algebra Appl. 295 (1999) 73–80] conjectured that (i) G is complete if and only if det ( A ( G ) ) = ( − 1 ) n − 1 ( n − 1 ) and also (ii) G is complete if and only if | det ( A ( G ) ) | = n − 1 . Here we disprove this conjecture by a counter example. Wang et al. [J.F. Wang, F. Belardo, Q.X. Huang, B. Borovicanin, On the two largest Q-eigenvalues of graphs, Discrete Math. 310 (2010) 2858–2866] conjectured that friendship graph F t is determined by its adjacency spectrum. Here we prove this conjecture. The eccentricity of a vertex is the maximum distance from it to another vertex and the average eccentricity ecc ( G ) of a graph G is the mean value of eccentricities of all vertices of G . Moreover, we mention three conjectures, obtained by the system AutoGraphiX, about the average eccentricity ( ecc ( G ) ) , girth ( g ( G ) ) and the spectral radius ( λ 1 ( G ) ) of graphs (see Aouchiche (2006) [1] , available online at http://www.gerad.ca/~agx/ ). We give a proof of one conjecture and disprove two conjectures by counter examples.

[1]  W. Haemers,et al.  Which graphs are determined by their spectrum , 2003 .

[2]  Xuerong Yong,et al.  ON THE DISTRIBUTION OF EIGENVALUES OF A SIMPLE UNDIRECTED GRAPH , 1999 .

[3]  H. Günthard,et al.  Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen , 1956 .

[4]  Kinkar Chandra Das,et al.  Estimating the Szeged index , 2009, Appl. Math. Lett..

[5]  Pierre Hansen,et al.  Variable neighborhood search for extremal graphs. 23. On the Randic index and the chromatic number , 2009, Discret. Math..

[6]  Kinkar Ch. Das,et al.  Proof of conjecture involving the second largest signless Laplacian eigenvalue and the index of graphs , 2011 .

[7]  James R. Schott,et al.  Matrix Analysis for Statistics , 2005 .

[8]  Pierre Hansen,et al.  Graphs with maximum connectivity index , 2003, Comput. Biol. Chem..

[9]  Willem H. Haemers,et al.  Developments on Spectral Characterizations of Graphs , 2007, Discret. Math..

[10]  Pierre Hansen,et al.  Variable Neighborhood Search for Extremal Graphs: IV: Chemical Trees with Extremal Connectivity Index , 1998, Comput. Chem..

[11]  Sandra Bolta Eigenvalues of a graph , 2014 .

[12]  P. Hansen,et al.  Automated Results and Conjectures on Average Distance in Graphs , 2006 .

[13]  Kinkar Chandra Das Proof of conjectures involving the largest and the smallest signless Laplacian eigenvalues of graphs , 2012, Discret. Math..

[14]  Kinkar Ch. Das,et al.  On conjectures involving second largest signless Laplacian eigenvalue of graphs , 2010 .

[15]  Mustapha Aouchiche,et al.  Nordhaus-Gaddum relations for proximity and remoteness in graphs , 2010, Comput. Math. Appl..

[16]  H.B. Walikar,et al.  On the Eigenvalues of a Graph , 2003, Electron. Notes Discret. Math..

[17]  Mustapha Aouchiche,et al.  Variable neighborhood search for extremal graphs. 21. Conjectures and results about the independence number , 2006, Discret. Appl. Math..

[18]  Hu Sheng On the largest eigenvalue of nonregular graphs , 2009 .

[19]  Jianfeng Wang,et al.  On the two largest Q-eigenvalues of graphs , 2010, Discret. Math..

[20]  Mustapha Aouchiche,et al.  A survey of automated conjectures in spectral graph theory , 2009 .

[21]  Kinkar Ch. Das Conjectures on index and algebraic connectivity of graphs , 2010 .

[22]  Kinkar Chandra Das,et al.  Some new bounds on the spectral radius of graphs , 2004, Discret. Math..

[23]  Mustapha Aouchiche,et al.  Variable Neighborhood Search for Extremal Graphs 14: The AutoGraphiX 2 System , 2006 .

[24]  P. Hansen,et al.  Variable Neighborhood Search for Extremal Graphs: IV: Chemical Trees with Extremal Connectivity Index , 1999, Comput. Chem..

[25]  Pierre Hansen,et al.  Variable neighborhood search for extremal graphs: 1 The AutoGraphiX system , 1997, Discret. Math..