Insights into the Magmatic Feeding System of the 2021 Eruption at Cumbre Vieja (La Palma, Canary Islands) Inferred from Gravity Data Modeling

This study used spatiotemporal land gravity data to investigate the 2021 eruption that occurred in the Cumbre Vieja volcano (La Palma, Canary Islands). First, we produced a density model by inverting the local gravity field using data collected in July 2005 and July 2021. This model revealed a low-density body beneath the western flank of the volcano that explains a highly fractured and altered structure related to the active hydrothermal system. Then, we retrieved changes in gravity and GNSS vertical displacements from repeated measurements made in a local network before (July 2021) and after (January 2022) the eruption. After correcting the vertical surface displacements, the gravity changes produced by mass variation during the eruptive process were used to build a forward model of the magmatic feeding system consisting of dikes and sills based on an initial model defined by the paths of the earthquake hypocenters preceding the eruption. Our study provides a final model of the magma plumbing system, which establishes a spatiotemporal framework tracing the path of magma ascent from the crust–mantle boundary to the surface from 11–19 September 2021, where the shallowest magma path was strongly influenced by the low-density body identified in the inversion process.

[1]  T. Dahm,et al.  Magmatic plumbing and dynamic evolution of the 2021 La Palma eruption , 2023, Nature Communications.

[2]  A. Peltier,et al.  Volcano‐Magnetic Signal Reveals Rapid Evolution of the Inner Structure of Piton de la Fournaise , 2023, Journal of Geophysical Research: Solid Earth.

[3]  K. Tiampo,et al.  Shallow magmatic intrusion evolution below La Palma before and during the 2021 eruption , 2022, Scientific reports.

[4]  V. Troll,et al.  Mantle source characteristics and magmatic processes during the 2021 La Palma eruption , 2022, Earth and Planetary Science Letters.

[5]  E. Vélez,et al.  Imaging the Volcanic Structures Beneath Gran Canaria Island Using New Gravity Data , 2022, Journal of Geophysical Research: Solid Earth.

[6]  L. D’Auria,et al.  Early Precursory Changes in the 3He/4He Ratio Prior to the 2021 Tajogaite Eruption at Cumbre Vieja Volcano, La Palma, Canary Islands , 2022, Geophysical Research Letters.

[7]  S. W. Niasari,et al.  Heat flow and gravity anomalies in some presumed hidden geothermal prospects in Java , 2022, IOP Conference Series: Earth and Environmental Science.

[8]  K. Abdelrahman,et al.  Geometry of the Magma Chamber and Curie Point Depth Beneath Hawaii Island: Inferences From Magnetic and Gravity Data , 2022, Frontiers in Earth Science.

[9]  F. Giudicepietro,et al.  Pre‐ and Co‐Eruptive Analysis of the September 2021 Eruption at Cumbre Vieja Volcano (La Palma, Canary Islands) Through DInSAR Measurements and Analytical Modeling , 2022, Geophysical Research Letters.

[10]  J. Ibáñez,et al.  Rapid magma ascent beneath La Palma revealed by seismic tomography , 2022, Scientific Reports.

[11]  M. Longpre Reactivation of Cumbre Vieja volcano , 2021, Science.

[12]  K. Tiampo,et al.  Detection of volcanic unrest onset in La Palma, Canary Islands, evolution and implications , 2021, Scientific Reports.

[13]  N. Pérez,et al.  La Palma island (Spain) geothermal system revealed by 3D magnetotelluric data inversion , 2020, Scientific Reports.

[14]  Mimmo Palano,et al.  Geodetic Study of the 2006-2010 Ground Deformation in La Palma (Canary Islands): Observational Results , 2020, Remote. Sens..

[15]  Agust Gudmundsson Volcanotectonics , 2020 .

[16]  W. D'Alessandro,et al.  Unrest signals after 46 years of quiescence at Cumbre Vieja, La Palma, Canary Islands , 2020 .

[17]  M. Chiappini,et al.  Three‐Dimensional Magnetic Models of La Gomera (Canary Islands): Insights Into the Early Evolution of an Ocean Island Volcano , 2020, Geochemistry, Geophysics, Geosystems.

[18]  J. Martí,et al.  Gravimetric study of the shallow basaltic plumbing system of Tenerife, Canary Islands , 2019 .

[19]  J. Morgan,et al.  Magma Plumbing Systems: A Geophysical Perspective , 2018, Journal of Petrology.

[20]  M. Fedi,et al.  Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy , 2018, Scientific Reports.

[21]  J. Maclennan,et al.  Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems , 2018, Front. Earth Sci..

[22]  J. Martí,et al.  Structural interpretation of El Hierro (Canary Islands) rifts system from gravity inversion modelling , 2017 .

[23]  A. Tryggvason,et al.  Stress barriers controlling lateral migration of magma revealed by seismic tomography , 2017, Scientific Reports.

[24]  Y. Yagi,et al.  Volcanic magma reservoir imaged as a low-density body beneath Aso volcano that terminated the 2016 Kumamoto earthquake rupture , 2016, Earth, Planets and Space.

[25]  J. Papčo,et al.  Prediction of vertical gradient of gravity and its significance for volcano monitoring – example from Teide volcano , 2016 .

[26]  J. Martí,et al.  Years to weeks of seismic unrest and magmatic intrusions precede monogenetic eruptions , 2016 .

[27]  R. White,et al.  Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions , 2016 .

[28]  V. Troll,et al.  The magma plumbing system for the 1971 Teneguía eruption on La Palma, Canary Islands , 2015, Contributions to Mineralogy and Petrology.

[29]  P. Hernández,et al.  Dynamics of diffuse carbon dioxide emissions from Cumbre Vieja volcano, La Palma, Canary Islands , 2015, Bulletin of Volcanology.

[30]  F. G. Montesinos,et al.  Volcanic signatures in time gravity variations during the volcanic unrest on El Hierro (Canary Islands) , 2014 .

[31]  Agust Gudmundsson,et al.  Depth of origin of magma in eruptions , 2013, Scientific Reports.

[32]  Agust Gudmundsson,et al.  Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates , 2012 .

[33]  J. Ibáñez,et al.  Evidence for magmatic underplating and partial melt beneath the Canary Islands derived using teleseismic receiver functions , 2012 .

[34]  J. Arnoso,et al.  Verifying the body tide at the Canary Islands using tidal gravimetry observations , 2011 .

[35]  J. Arnoso,et al.  Subsurface geometry and structural evolution of La Gomera island based on gravity data , 2011 .

[36]  Jian Lin,et al.  Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching-user guide , 2011 .

[37]  Kristy F. Tiampo,et al.  Shallow flank deformation at Cumbre Vieja volcano (Canary Islands): Implications on the stability of steep-sided volcano flanks at oceanic islands , 2010 .

[38]  M. Bonafede,et al.  A numerical model of dyke propagation in layered elastic media , 2010 .

[39]  K. Tiampo,et al.  Geodetic and Structural Research in La Palma, Canary Islands, Spain: 1992–2007 Results , 2009 .

[40]  John B. Rundle,et al.  Structural results for La Palma island using 3‐D gravity inversion , 2009 .

[41]  J. A. Rodríguez-Losada,et al.  Geomechanical parameters of intact rocks and rock masses from the Canary Islands: Implications on their flank stability , 2009 .

[42]  Kristy F. Tiampo,et al.  Time Evolution of Deformation Using Time Series of Differential Interferograms: Application to La Palma Island (Canary Islands) , 2008 .

[43]  J. Gottsmann,et al.  Shallow structure beneath the Central Volcanic Complex of Tenerife from new gravity data : Implications for its evolution and recent reactivation , 2008 .

[44]  L. G. D. Vallejo,et al.  Engineering Geological Properties of the Volcanic Rocks and Soils of the Canary Islands , 2008, Soils and Rocks.

[45]  J. Arnoso,et al.  The crustal structure of El Hierro (Canary Islands) from 3-D gravity inversion , 2006 .

[46]  T. Hansteen,et al.  Magma storage and underplating beneath cumbre vieja volcano, la palma (canary islands) , 2005 .

[47]  H. Rymer,et al.  Magma plumbing processes for persistent activity at Poás volcano, Costa Rica , 2005 .

[48]  J. Arnoso,et al.  Using a genetic algorithm for 3-D inversion of gravity data in Fuerteventura (Canary Islands) , 2005 .

[49]  F. Sigmundsson,et al.  Net gravity decrease at Askja volcano, Iceland: constraints on processes responsible for continuous caldera deflation, 1988–2003 , 2005 .

[50]  Agust Gudmundsson,et al.  Emplacement and arrest of sheets and dykes in central volcanoes , 2002 .

[51]  S. Krastel,et al.  Crustal structure of northern Gran Canaria, Canary Islands, deduced from active seismic tomography , 2002 .

[52]  J. Carracedo,et al.  Geology and volcanology of la Palma and El Hierro, Western Canaries , 2003 .

[53]  J. Arnoso,et al.  Modelling of crustal anomalies of Lanzarote (Canary Islands) in light of gravity data , 2001 .

[54]  Mark Simons,et al.  Finite source modelling of magmatic unrest in Socorro, New Mexico, and Long Valley, California , 2001 .

[55]  H. Rymer,et al.  Evolution of the magmatic plumbing system at Mt Etna: new evidence from gravity and magnetic data , 2000 .

[56]  T. Hildenbrand,et al.  Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models , 2000 .

[57]  K. Hoernle,et al.  The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption , 2000 .

[58]  R. Vieira,et al.  Gravity inversion by means of growing bodies , 2000 .

[59]  D. Page,et al.  Ground deformation monitoring of a potential landslide at La Palma, Canary Islands , 1999 .

[60]  K. Hoernle,et al.  Chronology and volcanology of the 1949 multi-vent rift-zone eruption on La Palma (Canary Islands) , 1999 .

[61]  Roberts,et al.  Magma intrusion beneath long valley caldera confirmed by temporal changes in gravity , 1999, Science.

[62]  J. Canales,et al.  A crustal transect through the northern and northeastern part of the volcanic edifice of Gran Canaria, Canary Islands , 1999 .

[63]  T. Hansteen,et al.  Rates of magma ascent and depths of magma reservoirs beneath La Palma (Canary Islands) , 1997 .

[64]  J. Zumberge,et al.  Precise point positioning for the efficient and robust analysis of GPS data from large networks , 1997 .

[65]  M. Torné,et al.  Gravity and multichannel seismic reflection constraints on the lithospheric structure of the Canary Swell , 1995 .

[66]  R. Schultz Limits on strength and deformation properties of jointed basaltic rock masses , 1995 .

[67]  Antonio Cendrero,et al.  Constructive and destructive episodes in the building of a young Oceanic Island, La Palma, Canary Islands, and genesis of the Caldera de Taburiente , 1994 .

[68]  Y. Okada Internal deformation due to shear and tensile faults in a half-space , 1992, Bulletin of the Seismological Society of America.

[69]  W. Ussler,et al.  Trapping of magma at midcrustal density discontinuities , 1988 .

[70]  James H. Dieterich,et al.  Deformation from Inflation of a Dipping Finite Prolate Spheroid in an Elastic Half‐Space as a Model for Volcanic Stressing , 1988 .

[71]  Paul M. Davis,et al.  Surface deformation due to inflation of an arbitrarily oriented triaxial ellipsoidal cavity in an elastic half-space, with reference to Kilauea volcano, Hawaii , 1986 .

[72]  H. Rymer,et al.  Gravity fields and the interpretation of volcanic structures: Geological discrimination and temporal evolution , 1986 .

[73]  F. Sansò,et al.  Remarks on the inverse gravimetric problem , 1986 .

[74]  Bezalel C. Haimson,et al.  Hydrofracturing stress measurements in the Iceland Research Drilling Project drill hole at Reydarfjordur, Iceland , 1982 .

[75]  S. Hjelt,et al.  The gravity anomaly of a dipping prism , 1974 .

[76]  A. McBirney,et al.  Properties of some common igneous rocks and their melts at high temperatures , 1973 .

[77]  F. J. R. Syberg POTENTIAL FIELD CONTINUATION BETWEEN GENERAL SURFACES , 1972 .

[78]  A. Spector,et al.  STATISTICAL MODELS FOR INTERPRETING AEROMAGNETIC DATA , 1970 .

[79]  D. Nagy The gravitational attraction of a right rectangular prism , 1966 .

[80]  M. F. Kane,et al.  A COMPREHENSIVE SYSTEM OF TERRAIN CORRECTIONS USING A DIGITAL COMPUTER , 1962 .

[81]  K. Mogi Relations between the Eruptions of Various Volcanoes and the Deformations of the Ground Surfaces around them , 1958 .

[82]  L. L. Nettleton Determination of density for reduction of gravimeter observations , 1939 .