A simulation model for welfare policy analysis

Abstract This paper describes a new approach to large-scale simulation modeling for the analysis of public welfare policies. Whereas conventional microanalytic simulation models extrapolate the dynamic behavior of a representative sample of individuals to the corresponding target population, the new modeling technique disaggregates an exogenous demographic forecast into enough detail to evaluate the impact and cost of proposed social programs. This approach uses a multivariate extension of the Johnson translation system of probability distributions to estimate the percentage of individuals in a target population who satisfy given program eligibility criteria. The methodology is demonstrated in a prototype decision support system for analysis of the Institutional Care and Community Care programs of the Texas Department of Human Services.

[1]  N L JOHNSON,et al.  Bivariate distributions based on simple translation systems. , 1949, Biometrika.

[2]  G. Orcutt,et al.  Policy Exploration through Microanalytic Simulation , 1976 .

[3]  N. L. Johnson,et al.  Tables to Facilitate Fitting S U Frequency Curves , 1967 .

[4]  J. J. Swain,et al.  Least-squares estimation of distribution functions in johnson's translation system , 1988 .

[5]  J. Bukač,et al.  Fitting SB curves using symmetrical percentile points , 1972 .

[6]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[7]  James R. Wilson,et al.  A simulation model for aged and disabled services , 1984, WSC '84.

[8]  N. L. Johnson,et al.  Systems of Frequency Curves , 1969 .

[9]  Norman L. Johnson,et al.  Some notes on tables to facilitate fitting SB curves , 1971 .

[10]  James R. Wilson Fitting Johnson curves to univariate and multivariate data , 1983, WSC '83.

[11]  E. Dudewicz,et al.  Introduction to statistics and probability , 1977 .

[12]  G. S. Fishman Principles of Discrete Event Simulation , 1978 .

[13]  G. P. Steck A Table for Computing Trivariate Normal Probabilities , 1958 .

[14]  J. Draper PROPERTIES OF DISTRIBUTIONS RESULTING FROM CERTAIN SIMPLE TRANSFORMATIONS OF THE NORMAL DISTRIBUTION , 1952 .

[15]  David T. Mage,et al.  An Explicit Solution for SB, Parameters Using Four Percentile Points , 1980 .

[16]  James R. Wilson,et al.  Fitting Johnson distributions using least squares: simulation applications , 1985, WSC '85.

[17]  S. Shapiro,et al.  THE JOHNSON SYSTEM: SELECTION AND PARAMETER ESTIMATION , 1980 .

[18]  Norman L. Johnson,et al.  Tables to facilitate fitting SB curves II: both terminals known , 1971 .

[19]  I. D. Hill,et al.  Fitting Johnson Curves by Moments , 1976 .

[20]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .