Myths of Computer Graphics
暂无分享,去创建一个
[1] Kurt Akeley,et al. The accumulation buffer: hardware support for high-quality rendering , 1990, SIGGRAPH.
[2] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[3] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[4] Chuck Hansen,et al. Eurographics '97 , 1998, COMG.
[5] G. Larcher,et al. Walsh Series Analysis of the L2-Discrepancyof Symmetrisized Point Sets , 2001 .
[6] James T. Kajiya,et al. Rendering fur with three dimensional textures , 1989, SIGGRAPH.
[7] John Platt,et al. 20.4: Displaced Filtering for Patterned Displays , 2000 .
[8] William H. Press,et al. Numerical recipes in C , 2002 .
[9] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[10] Harald Niederreiter,et al. Error bounds for Quasi-Monte Carlo integration with uniform point sets , 2003 .
[11] Leonidas J. Guibas,et al. Robust Monte Carlo methods for light transport simulation , 1997 .
[12] Alexander Keller,et al. Fast Generation of Randomized Low-Discrepancy Point Sets , 2002 .
[13] Alexander Keller,et al. Metropolis Light Transport for Participating Media , 2000, Rendering Techniques.
[14] Andrew S. Glassner,et al. Principles of Digital Image Synthesis , 1995 .
[15] MatoušekJiří. On the L2-discrepancy for anchored boxes , 1998 .
[16] H. Faure. Good permutations for extreme discrepancy , 1992 .
[17] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[18] Robert L. Cook,et al. The Reyes image rendering architecture , 1987, SIGGRAPH.
[19] Alexander Keller,et al. Efficient Bidirectional Path Tracing by Randomized Quasi-Monte Carlo Integration , 2002 .
[20] P. Erdos,et al. Studies in Pure Mathematics , 1983 .
[21] H. Niederreiter,et al. Quasirandom Sampling in Computer Graphics , 1992 .
[22] S. K. Zaremba,et al. La discrépance isotrope et l'intégration numérique , 1970 .
[23] A. Keller. A Quasi-Monte Carlo Algorithm for the Global Illumination Problem in the Radiosity Setting , 1995 .
[24] Alexander Keller. Quasi-Monte Carlo Radiosity , 1996, Rendering Techniques.
[25] Edmund Hlawka,et al. Discrepancy and Riemann Integration , 1990 .
[26] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[27] H. Jensen. Realistic Image Synthesis Using Photon Mapping , 2001 .
[28] George Drettakis,et al. Interactive Sampling and Rendering for Complex and Procedural Geometry , 2001, Rendering Techniques.
[29] Alexander Keller. The Quasi-Random Walk , 1998 .
[30] Alexander Keller,et al. Stratification by Rank-1 Lattices , 2004 .
[31] Alexander Keller,et al. Efficient Multidimensional Sampling , 2002, Comput. Graph. Forum.
[32] Peter Shirley,et al. Discrepancy as a Quality Measure for Sample Distributions , 1991, Eurographics.
[33] Don P. Mitchell,et al. Ray Tracing and Irregularities of Distribution , 2000 .
[34] J. Yellott. Spectral consequences of photoreceptor sampling in the rhesus retina. , 1983, Science.
[35] John Platt,et al. 20.4: Displaced Filtering for Patterned Displays , 2000 .