Expanding polynomials over finite fields of large characteristic, and a regularity lemma for definable sets

Let $P: \F \times \F \to \F$ be a polynomial of bounded degree over a finite field $\F$ of large characteristic. In this paper we establish the following dichotomy: either $P$ is a moderate asymmetric expander in the sense that $|P(A,B)| \gg |\F|$ whenever $A, B \subset \F$ are such that $|A| |B| \geq C |\F|^{2-1/8}$ for a sufficiently large $C$, or else $P$ takes the form $P(x,y) = Q(F(x)+G(y))$ or $P(x,y) = Q(F(x) G(y))$ for some polynomials $Q,F,G$. This is a reasonably satisfactory classification of polynomials of two variables that moderately expand (either symmetrically or asymmetrically). We obtain a similar classification for weak expansion (in which one has $|P(A,A)| \gg |A|^{1/2} |\F|^{1/2}$ whenever $|A| \geq C |\F|^{1-1/16}$), and a partially satisfactory classification for almost strong asymmetric expansion (in which $|P(A,B)| = (1-O(|\F|^{-c})) |\F|$ when $|A|, |B| \geq |\F|^{1-c}$ for some small absolute constant $c>0$). The main new tool used to establish these results is an algebraic regularity lemma that describes the structure of dense graphs generated by definable subsets over finite fields of large characteristic. This lemma strengthens the Sz\'emeredi regularity lemma in the algebraic case, in that while the latter lemma decomposes a graph into a bounded number of components, most of which are $\eps$-regular for some small but fixed $\epsilon$, the latter lemma ensures that all of the components are $O(|\F|^{-1/4})$-regular. This lemma, which may be of independent interest, relies on some basic facts about the \'etale fundamental group of an algebraic variety.

[1]  Michele de Franchis,et al.  Un teorema sulle involuzioni irrazionali , 1913 .

[2]  A. Pillay,et al.  Definable subgroups of algebraic groups over finite fields. , 1995 .

[3]  Donal O'Shea,et al.  Ideals, varieties, and algorithms - an introduction to computational algebraic geometry and commutative algebra (2. ed.) , 1997, Undergraduate texts in mathematics.

[4]  Lajos Rónyai,et al.  A Combinatorial Problem on Polynomials and Rational Functions , 2000, J. Comb. Theory, Ser. A.

[5]  I. Shkredov,et al.  On monochromatic solutions of some nonlinear equations in ℤ/pℤ , 2009, 0909.3269.

[6]  V. Zoonekynd Théorème de Van Kampen pour les champs algébriques , 2001 .

[7]  A. Weil Numbers of solutions of equations in finite fields , 1949 .

[8]  Norbert Hegyv'ari,et al.  Explicit constructions of extractors and expanders , 2012, 1206.1146.

[9]  A. Macintyre,et al.  Definable sets over finite fields. , 1992 .

[10]  Vojtech Rödl,et al.  The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..

[11]  Jean-Pierre Serre,et al.  Exemples de variétés projectives conjuguées non homéomorphes , 2003 .

[12]  S. Shelah,et al.  Regularity lemmas for stable graphs , 2011, 1102.3904.

[13]  Emmanuel Kowalski Exponential sums over definable subsets of finite fields , 2005 .

[14]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[15]  György Elekes,et al.  How to find groups? (and how to use them in Erdős geometry?) , 2012, Comb..

[16]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[17]  J. Bourgain,et al.  MORE ON THE SUM-PRODUCT PHENOMENON IN PRIME FIELDS AND ITS APPLICATIONS , 2005 .

[18]  John Lenz,et al.  The poset of hypergraph quasirandomness , 2012, Random Struct. Algorithms.

[19]  Katalin Gyarmati,et al.  Equations in finite fields with restricted solution sets. I (Character sums) , 2008 .

[20]  D. Mumford The red book of varieties and schemes , 1988 .

[21]  Gnter Tamme,et al.  Teilkörper höheren Geschlechts eines algebraischen Funktionenkörpers , 1972 .

[22]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[23]  I. Shafarevich Basic algebraic geometry , 1974 .

[24]  P. Deligne,et al.  Groupes de monodromie en geometrie algebrique , 1972 .

[25]  Vojtech Rödl,et al.  Regular Partitions of Hypergraphs: Regularity Lemmas , 2007, Combinatorics, Probability and Computing.

[26]  Ben Green,et al.  Approximate Subgroups of Linear Groups , 2010, 1005.1881.

[27]  Chun-Yen Shen,et al.  Fourier analysis and expanding phenomena in finite fields , 2009, 0909.5471.

[28]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[29]  Misha Rudnev,et al.  Erdös distance problem in vector spaces over finite fields , 2005 .

[30]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[31]  Fan Chung Graham,et al.  Regularity Lemmas for Hypergraphs and Quasi-randomness , 1991, Random Struct. Algorithms.

[32]  Alexander Grothendieck,et al.  Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2) , 1962 .

[33]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[34]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[35]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[36]  Michael D. Fried,et al.  Solving Diophantine Problems Over All Residue Class Fields of a Number Field and All Finite Fields , 1976 .

[37]  Richard J. Lipton,et al.  A Probabilistic Remark on Algebraic Program Testing , 1978, Inf. Process. Lett..

[38]  B. M. Fulk MATH , 1992 .

[39]  Katalin Gyarmati,et al.  Equations in finite fields with restricted solution sets. II (Algebraic equations) , 2008 .

[40]  Ehud Hrushovski,et al.  Stable group theory and approximate subgroups , 2009, 0909.2190.

[41]  József Solymos,et al.  Incidences and the spectra of graphs , 2008 .

[42]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[43]  C. Wampler,et al.  Basic Algebraic Geometry , 2005 .

[44]  Catarina I. Kiefe Sets definable over finite fields: their zeta-functions , 1976 .

[45]  C. Torrance Review: Kurt Gödel, The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis with the Axioms of Set Theory , 1941 .

[46]  Doowon Koh,et al.  Generalized incidence theorems, homogeneous forms and sum-product estimates in finite fields , 2008, European journal of combinatorics (Print).

[47]  Ben Green,et al.  The structure of approximate groups , 2011, Publications mathématiques de l'IHÉS.

[48]  Joseph L. Taylor Several Complex Variables with Connections to Algebraic Geometry and Lie Groups , 2002 .

[49]  Moshe Jarden,et al.  THE ELEMENTARY THEORY OF FINITE FIELDS , 2004 .

[50]  Sergei Konyagin,et al.  Distance sets of well-distributed planar sets for polygonal norms , 2004 .

[51]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[52]  S. Lang,et al.  NUMBER OF POINTS OF VARIETIES IN FINITE FIELDS. , 1954 .

[53]  T. Willmore Algebraic Geometry , 1973, Nature.

[54]  Boris Bukh Sums of Dilates , 2008, Comb. Probab. Comput..

[55]  Jacob Tsimerman,et al.  Sum–product estimates for rational functions , 2010, 1002.2554.

[56]  Lou van den Dries,et al.  Decidability and undecidability theorems for PAC-fields , 1981 .

[57]  RodlVojtech,et al.  Regular Partitions of Hypergraphs , 2007 .

[58]  Jozsef Solymosi,et al.  Expanding Polynomials over the rationals , 2012, 1212.3365.

[59]  S. Kleiman Bertini and his two fundamental theorems , 1997, alg-geom/9704018.

[60]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[61]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[62]  Alexander Grothendieck,et al.  Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : III. Étude cohomologique des faisceaux cohérents, Première partie , 1961 .

[63]  R. Ho Algebraic Topology , 2022 .

[64]  Daqing Wan,et al.  Generators and irreducible polynomials over finite fields , 1997, Math. Comput..

[65]  Илья Дмитриевич Шкредов,et al.  О монохроматических решениях некоторых нелинейных уравнений в $\mathbb Z/p\mathbb Z$@@@On Monochromatic Solutions of Some Nonlinear Equations in $\mathbb Z/p\mathbb Z$ , 2010 .

[66]  Toni Robertson,et al.  Building bridges: negotiating the gap between work practice and technology design , 2000, Int. J. Hum. Comput. Stud..

[67]  Chun-Yen Shen,et al.  On the size of the set A(A +  1) , 2008, 0811.4206.

[68]  Ralf Fröberg,et al.  An introduction to Gröbner bases , 1997, Pure and applied mathematics.

[69]  Michael E. Zieve,et al.  ON RITT'S POLYNOMIAL DECOMPOSITION THEOREMS , 2008, 0807.3578.

[70]  Derrick Hart,et al.  Sums and products in finite fields: an integral geometric viewpoint , 2007, 0705.4256.

[71]  Van H. Vu,et al.  SUM-PRODUCT ESTIMATES VIA DIRECTED EXPANDERS , 2008 .

[72]  A. Schinzel Polynomials with Special Regard to Reducibility: Polynomials over a number field , 2000 .

[73]  H. DAVENPORT Two Problems Concerning Polynomials. , 1964 .

[74]  Leila Schneps,et al.  Galois groups and fundamental groups , 2003 .

[75]  Alain Plagne,et al.  Sums of Dilates in Groups of Prime Order , 2011, Combinatorics, Probability and Computing.

[76]  David Schwein,et al.  Étale Cohomology , 2018, Translations of Mathematical Monographs.

[77]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[78]  Fan Chung Graham,et al.  Quasi-Random Hypergraphs , 1990, Random Struct. Algorithms.

[79]  M. A. Clements Terence Tao , 1984 .

[80]  Terence Tao,et al.  The Kakeya set and maximal conjectures for algebraic varieties over finite fields , 2009, 0903.1879.

[81]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .