Real versus measured surface potentials in scanning Kelvin probe microscopy.

Noncontact potentiometry or scanning Kelvin probe microscopy (SKPM) is a widely used technique to study charge injection and transport in (in)organic devices by measuring a laterally resolved local potential. This technique suffers from the significant drawback that experimentally obtained curves do not generally reflect the true potential profile in the device due to nonlocal coupling between the probing tip and the device. In this work, we quantitatively explain the experimental SKPM response and by doing so directly link theoretical device models to real observables. In particular, the model quantitatively explains the effects of the tip-sample distance and the dependence on the orientation of the probing tip with respect to the device.

[1]  M. Shannon,et al.  ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction , 2006 .

[2]  D. Thomson,et al.  Resolution enhancement in probing of high-speed integrated circuits using dynamic electrostatic force-gradient microscopy , 2004 .

[3]  Electrostatic forces between metallic tip and semiconductor surfaces , 1995 .

[4]  Richard H. Friend,et al.  A microscopic view of charge transport in polymer transistors , 2004 .

[5]  Y. Rosenwaks,et al.  Measuring minority-carrier diffusion length using a Kelvin probe force microscope , 2000 .

[6]  Takuji Takahashi,et al.  Tip-to-sample distance dependence of an electrostatic force in KFM measurements. , 2004, Ultramicroscopy.

[7]  J. Sáenz,et al.  Cantilever effects on electrostatic force gradient microscopy , 2004 .

[8]  A. Stemmer,et al.  Resolution and contrast in Kelvin probe force microscopy , 1998 .

[9]  D. Ginger,et al.  Time-resolved electrostatic force microscopy of polymer solar cells , 2006, Nature materials.

[10]  B. Grévin,et al.  Probing Local Electronic Transport at the Organic Single‐Crystal/Dielectric Interface , 2007 .

[11]  C. Daniel Frisbie,et al.  Surface potential profiling and contact resistance measurements on operating pentacene thin-film transistors by Kelvin probe force microscopy , 2003 .

[12]  J. Slinkman,et al.  Capacitive effects on quantitative dopant profiling with scanned electrostatic force microscopes , 1996 .

[13]  M. Spencer,et al.  Cantilever effects on the measurement of electrostatic potentials by scanning Kelvin probe microscopy , 2001 .

[14]  J. E. MacDonald,et al.  Quantitative electrostatic force microscopy-phase measurements , 2004 .

[15]  J. Gómez‐Herrero,et al.  Electrostatic force gradient signal: resolution enhancement in electrostatic force microscopy and improved Kelvin probe microscopy , 2003 .

[16]  J. A. Nichols,et al.  Potential imaging of pentacene organic thin-film transistors , 2003 .

[17]  P. Girard,et al.  ELECTROSTATIC FORCES ACTING ON THE TIP IN ATOMIC FORCE MICROSCOPY : MODELIZATION AND COMPARISON WITH ANALYTIC EXPRESSIONS , 1997 .

[18]  Kelvin probe force microscopy using near-field optical tips , 2000 .

[19]  F. Lebon,et al.  Finite element simulations of the resolution in electrostatic force microscopy , 1998 .

[20]  S. Hudlet,et al.  Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface , 1998 .

[21]  H. Sirringhaus,et al.  Noncontact potentiometry of polymer field-effect transistors , 2002 .

[22]  Y. Burkova,et al.  Scanning Kelvin probe and photoemission electron microscopy of organic source-drain structures , 2004 .

[23]  Roger H. French,et al.  Parametric tip model and force-distance relation for Hamaker constant determination from atomic force microscopy , 1996 .

[24]  J. J. Sáenz,et al.  Effective tip radius in electrostatic force microscopy , 2005 .

[25]  Vincenzo Palermo,et al.  Electronic Characterization of Organic Thin Films by Kelvin Probe Force Microscopy , 2006 .

[26]  M. Lagally,et al.  Quantitative analysis of electric force microscopy: The role of sample geometry , 2005 .

[27]  Y Wu,et al.  Two-dimensional, electrostatic finite element study of tip-substrate interactions in electric force microscopy of high density interconnect structures. , 2001, Ultramicroscopy.

[28]  Lukas M. Eng,et al.  Accuracy and resolution limits of Kelvin probe force microscopy , 2005 .

[29]  H. Butt,et al.  Electrostatic forces acting on tip and cantilever in atomic force microscopy , 2006 .

[30]  William R. Silveira,et al.  Microscopic view of charge injection in an organic semiconductor. , 2004, Physical review letters.

[31]  O. Vatel,et al.  Kelvin probe force microscopy for potential distribution measurement of semiconductor devices , 1995 .

[32]  K. Mann,et al.  DUV scattering measurements as a tool for characterization of UV-optical surfaces , 2001 .