Synchronization in a fractional-order model of pancreatic β-cells

Abstractβ-cells in the pancreas can be described by a model of coupled biological oscillators with communication links, which can synchronize their electrical activities, giving rise to a square-wave bursting-like insulin release. In fact, β-cells play a vital role in analyzing and characterizing diabetes conditions. This research work studies the synchronization between two fractional-order pancreatic β-cells. Numerically, the fractional-order model of the pancreatic β-cell is analyzed using an algorithm derived from the Grünwald–Letnikov scheme. It is found that, by modifying only the fractional-order while preserving the system parameter values, different types of bursting activities can be observed. Then, synchronization in the coupled fractional-order pancreatic β-cells is studied in detail by considering different patterns of the bursting activities. Simulation results demonstrate that a complete synchronization is effectively attained by choosing a proper value for the control gain.

[1]  C. Toumazou,et al.  A Benchtop Closed-loop System Controlled by a Bio-Inspired Silicon Implementation of the Pancreatic β Cell , 2009, Journal of diabetes science and technology.

[2]  L. Philipson,et al.  Resting beta-cells - A functional reserve? , 2016, Diabetes & metabolism.

[3]  Christos Volos,et al.  A simple three-dimensional fractional-order chaotic system without equilibrium: Dynamics, circuitry implementation, chaos control and synchronization , 2017 .

[4]  Weihua Deng,et al.  Remarks on fractional derivatives , 2007, Appl. Math. Comput..

[5]  Recai Kiliç,et al.  Experimental realizations of the HR neuron model with programmable hardware and synchronization applications , 2012 .

[6]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[7]  Sundarapandian Vaidyanathan,et al.  Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities , 2014 .

[8]  M. A. Zahid,et al.  Mathematical study of fractional-order biological population model using optimal homotopy asymptotic method , 2016 .

[9]  J. Rinzel,et al.  Dissection of a model for neuronal parabolic bursting , 1987, Journal of mathematical biology.

[10]  B. Bodo,et al.  Fractional dynamical behavior of electrical activity in a model of pancreatic β-cells , 2017 .

[11]  Xiaofeng Liao,et al.  A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation , 2012 .

[12]  Shenggang Li,et al.  Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions , 2017 .

[13]  Qishao Lu,et al.  Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling , 2012, Cognitive Neurodynamics.

[14]  Guanrong Chen,et al.  Suppressing chaos in fractional-order systems by periodic perturbations on system variables , 2013 .

[15]  S. Bhalekar,et al.  Synchronization of incommensurate non-identical fractional order chaotic systems using active control , 2014 .

[16]  S. Ghasemi,et al.  Application of Fractional Calculus Theory to Robust Controller Design for Wind Turbine Generators , 2014, IEEE Transactions on Energy Conversion.

[17]  Jesus M. Munoz-Pacheco,et al.  Chaos generation in fractional-order switched systems and its digital implementation , 2017 .

[18]  Adel Ouannas,et al.  A simple fractional-order chaotic system without equilibrium and its synchronization , 2018 .

[19]  Isabel S. Jesus,et al.  Fractional Electrical Impedances in Botanical Elements , 2008 .

[20]  Pagavathigounder Balasubramaniam,et al.  Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography , 2013, Nonlinear Dynamics.

[21]  Hadi Delavari,et al.  Fractional Order Back Stepping Sliding Mode Control for Blood Glucose Regulation in Type I Diabetes Patients , 2017 .

[22]  R. E. Amritkar,et al.  Generalized synchronization of coupled chaotic systems , 2013 .

[23]  Kehui Sun,et al.  Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative , 2017 .

[24]  Viet-Thanh Pham,et al.  A No-Equilibrium Hyperchaotic System and Its Fractional-Order Form , 2017 .

[25]  Ahmed S. Elwakil,et al.  Experimental comparison of integer/fractional-order electrical models of plant , 2017 .

[26]  E Ahmed,et al.  On fractional order models for Hepatitis C , 2010, Nonlinear biomedical physics.

[27]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[28]  M. Ravier,et al.  Oscillations of insulin secretion can be triggered by imposed oscillations of cytoplasmic Ca2+ or metabolism in normal mouse islets. , 1999, Diabetes.

[29]  Shenquan Liu,et al.  Quantification of synchronization phenomena in two reciprocally gap-junction coupled bursting pancreatic β-cells , 2014 .

[30]  Dawei Ding,et al.  Chaos and Hopf bifurcation control in a fractional-order memristor-based chaotic system with time delay , 2017 .

[31]  Mark Pernarowski,et al.  Fast Subsystem Bifurcations in a Slowly Varying Liénard System Exhibiting Bursting , 1994, SIAM J. Appl. Math..

[32]  Timoleon Crepin Kofane,et al.  Fractional nonlinear dynamics of DNA breathing , 2017, Commun. Nonlinear Sci. Numer. Simul..

[33]  P. Balasubramaniam,et al.  Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem , 2017 .

[34]  Ranjit Kumar Upadhyay,et al.  Spiking and bursting patterns of fractional-order Izhikevich model , 2018, Commun. Nonlinear Sci. Numer. Simul..

[35]  Dumitru Baleanu,et al.  Fractional Hyperchaotic Telecommunication Systems: A New Paradigm , 2013 .

[36]  Alessio Gizzi,et al.  On the coherent behavior of pancreatic beta cell clusters , 2014, 1407.7741.

[37]  Rose P. Ignatius,et al.  Nonlinear feedback coupling in Hindmarsh–Rose neurons , 2017 .

[38]  Changpin Li,et al.  Introduction to fractional integrability and differentiability , 2011 .

[39]  Mark Pernarowski,et al.  Fast and Slow Subsystems for a Continuum Model of Bursting Activity in the Pancreatic Islet , 1998, SIAM J. Appl. Math..

[40]  Karthikeyan Rajagopal,et al.  FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization , 2017 .

[41]  Clara-Mihaela Ionescu,et al.  The role of fractional calculus in modeling biological phenomena: A review , 2017, Commun. Nonlinear Sci. Numer. Simul..

[42]  Wei-Ching Chen,et al.  Nonlinear dynamics and chaos in a fractional-order financial system , 2008 .

[43]  Robert M. Miura,et al.  Analysis of a Class of Models of Bursting Electrical Activity in Pancreatic Beta-Cells , 1998, SIAM J. Appl. Math..

[44]  E. Campos-Cantón,et al.  Strange attractors generated by a fractional order switching system and its topological horseshoe , 2016 .

[45]  Vipul Periwal,et al.  The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans , 2015, PLoS Comput. Biol..

[46]  Kehui Sun,et al.  Dynamics of a fractional-order simplified unified system based on the Adomian decomposition method , 2016 .

[47]  Grzegorz Litak,et al.  Finite-time synchronization of fractional-order simplest two-component chaotic oscillators , 2017, The European Physical Journal B.