Multi-responsive hybrid particles: thermo-, pH-, photo-, and magneto-responsive magnetic hydrogel cores with gold nanorod optical triggers.

The research strategy described in this manuscript harnesses the attractive properties of hydrogels, gold nanorods (Aurods), and magnetic nanoparticles (MNPs) by synthesizing one unique multi-responsive nanostructure. This novel hybrid structure consists of silica-coated magnetic particles encapsulated within a thermo-responsive P(NIPAM-co-AA) hydrogel network on which Aurods are assembled. Furthermore, this research demonstrates that these composite particles respond to several forms of external stimuli (temperature, pH, light, and/or applied magnetic field) owing to their specific architecture. Exposure of the hybrid particles to external stimuli led to a systematic and reversible variation in the hydrodynamic diameter (swelling-deswelling) and thus in the optical properties of the hybrid particles (red-shifting of the plasmon band). Such stimuli-responsive volume changes can be effectively exploited in drug-delivery applications.

[1]  J. Yao,et al.  Silver Nanoparticles Stabilized by Thermoresponsive Microgel Particles: Synthesis and Evidence of an Electron Donor-Acceptor Effect , 2007 .

[2]  Richard C. Willson,et al.  Tuning the Magnetic Properties of Nanoparticles , 2013, International journal of molecular sciences.

[3]  Matthias Karg,et al.  Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature- and pH-tunable plasmon resonance. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[4]  Jun‐Hyun Kim,et al.  Discrete thermally responsive hydrogel‐coated gold nanoparticles for use as drug‐delivery vehicles , 2006 .

[5]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[6]  H. Tian,et al.  A Hybrid Supramolecular Polymeric Hydrogel with Rapid Self-Healing Property. , 2015, Chemistry, an Asian journal.

[7]  Younan Xia,et al.  Cover Picture: Shape‐Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? (Angew. Chem. Int. Ed. 1/2009) , 2009 .

[8]  Jinwoo Cheon,et al.  Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. , 2009, Angewandte Chemie.

[9]  Changhcun Wang,et al.  Preparation of P(NIPAM-co-AA) microcontainers surface-anchored with magnetic nanoparticles. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[10]  Robert Pelton,et al.  Preparation of aqueous latices with N-isopropylacrylamide , 1986 .

[11]  Peter X Ma,et al.  Spontaneous formation of temperature-responsive assemblies by molecular recognition of a β-cyclodextrin containing block copolymer and poly(N-isopropylacrylamide). , 2010, Soft matter.

[12]  E. Kumacheva,et al.  Sequestering Gold Nanorods by Polymer Microgels , 2008 .

[13]  Andreas Walther,et al.  Superparamagnetic and fluorescent thermo-responsive core-shell-corona hybrid nanogels with a protective silica shell. , 2012, Journal of colloid and interface science.

[14]  C. Murphy,et al.  Polyelectrolyte-Coated Gold Nanorods: Synthesis, Characterization and Immobilization , 2005 .

[15]  Martin J. Snowden,et al.  Colloidal copolymer microgels of N-isopropylacrylamide and acrylic acid: pH, ionic strength and temperature effects , 1996 .

[16]  Prashant V. Kamat,et al.  Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods , 2004 .

[17]  T. Randall Lee,et al.  Thermo- and pH-Responsive Hydrogel-Coated Gold Nanoparticles , 2004 .

[18]  W. Chiu,et al.  Functional acrylic acid as stabilizer for synthesis of smart hydrogel particles containing a magnetic Fe3O4 core , 2012 .

[19]  Ho-Suk Choi,et al.  Doxorubicin-encapsulated thermosensitive liposomes modified with poly(N-isopropylacrylamide-co-acrylamide): drug release behavior and stability in the presence of serum. , 2006, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[20]  Chi Wu,et al.  Internal Motions of both Poly(N-isopropylacrylamide) Linear Chains and Spherical Microgel Particles in Water , 1996 .

[21]  L. Lyon,et al.  Photoinduced Phase Transitions in Poly(N-isopropylacrylamide) Microgels , 2004 .

[22]  Luis M Liz-Marzán,et al.  Aligning Au nanorods by using carbon nanotubes as templates. , 2005, Angewandte Chemie.

[23]  Robert Langer,et al.  A magnetically triggered composite membrane for on-demand drug delivery. , 2009, Nano letters.

[24]  K. G. Thomas,et al.  Selective detection of cysteine and glutathione using gold nanorods. , 2005, Journal of the American Chemical Society.

[25]  H. Möhwald,et al.  Fabrication of Thermoresponsive Plasmonic Microspheres with Long‐Term Stability from Hydrogel Spheres , 2005 .

[26]  H. Möhwald,et al.  Behavior of temperature-sensitive PNIPAM confined in polyelectrolyte capsules. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[27]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[28]  Colby A. Foss,et al.  The Effect of Mutual Orientation on the Spectra of Metal Nanoparticle Rod−Rod and Rod−Sphere Pairs , 2002 .

[29]  E. Kumacheva,et al.  Hybrid microgels photoresponsive in the near-infrared spectral range. , 2004, Journal of the American Chemical Society.

[30]  Jianhua Hu,et al.  Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release , 2009 .

[31]  Qing Peng,et al.  Monodisperse magnetic single-crystal ferrite microspheres. , 2005, Angewandte Chemie.

[32]  San-Yuan Chen,et al.  Instantaneous drug delivery of magnetic/thermally sensitive nanospheres by a high-frequency magnetic field. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[33]  Nicolas H Voelcker,et al.  Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. , 2009, Biomaterials.

[34]  C. Pichot,et al.  Hydrophilic magnetic polymer latexes. 2. Encapsulation of adsorbed iron oxide nanoparticles , 1999 .

[35]  M. El-Sayed,et al.  Temperature-jump investigations of the kinetics of hydrogel nanoparticle volume phase transitions. , 2001, Journal of the American Chemical Society.

[36]  M. Serpe,et al.  Thermally modulated insulin release from microgel thin films. , 2004, Biomacromolecules.

[37]  G. Kränzlein Zum 100 jährigen Gedächtnis der Arbeiten von F. F. Runge , 1935 .

[38]  E. Kumacheva,et al.  Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[39]  Wuli Yang,et al.  A Novel Approach for Preparation of Thermoresponsive Polymer Magnetic Microspheres with Core–Shell Structure , 2003 .

[40]  M. El-Sayed,et al.  Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. , 2005, The journal of physical chemistry. B.

[41]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[42]  Jianping Gao,et al.  A facile method to assemble PNIPAM-containing microgel photonic crystals. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[43]  F. Zhang,et al.  Rational synthesis of magnetic thermosensitive microcontainers as targeting drug carriers. , 2009, Small.

[44]  A. Gaharwar,et al.  Dual-stimuli responsive PNiPAM microgel achieved via layer-by-layer assembly: magnetic and thermoresponsive. , 2008, Journal of colloid and interface science.

[45]  Jia Guo,et al.  Organic-dye-coupled magnetic nanoparticles encaged inside thermoresponsive PNIPAM Microcapsules. , 2005, Small.

[46]  Maria Vamvakaki,et al.  Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces , 2011 .

[47]  Justin D. Debord,et al.  Synthesis and characterization of pH-responsive copolymer microgels with tunable volume phase transition temperatures , 2003 .

[48]  M. Stamm,et al.  Synthesis and Characterization of Thermosensitive PNIPAM Microgels Covered with Superparamagnetic γ-Fe2O3 Nanoparticles , 2007 .

[49]  P. Chow,et al.  Thermoresponsive core–shell magnetic nanoparticles for combined modalities of cancer therapy , 2009, Nanotechnology.

[50]  Younan Xia,et al.  Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach , 2002 .

[51]  Chi Wu,et al.  Laser Light Scattering Study of the Phase Transition of Poly(N-isopropylacrylamide) in Water. 1. Single Chain , 1995 .

[52]  Chi-Jung Chang,et al.  Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A Review , 2014, Materials.

[53]  Jia Guo,et al.  Preparation and characterization of multiresponsive polymer composite microspheres with core–shell structure , 2007 .

[54]  D Gan,et al.  Tunable swelling kinetics in core--shell hydrogel nanoparticles. , 2001, Journal of the American Chemical Society.

[55]  Morris,et al.  Adsorption of Lead Ions onto N -Isopropylacrylamide and Acrylic Acid Copolymer Microgels , 1997, Journal of colloid and interface science.

[56]  J. S. Pedersen,et al.  Influence of shell thickness and cross-link density on the structure of temperature-sensitive poly-N-isopropylacrylamide-poly-N-isopropylmethacrylamide core-shell microgels investigated by small-angle neutron scattering. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[57]  Matthias Karg,et al.  Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. , 2007, Small.

[58]  Miguel A. Correa-Duarte,et al.  Control of Packing Order of Self-Assembled Monolayers of Magnetite Nanoparticles with and without SiO2 Coating by Microwave Irradiation , 1998 .

[59]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[60]  Andrij Pich,et al.  Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. , 2007, Small.

[61]  L. Andrew Lyon,et al.  Dependence of Shell Thickness on Core Compression in Acrylic Acid Modified Poly(N-isopropylacrylamide) Core/Shell Microgels , 2003 .

[62]  Sergio Mendez,et al.  Synthesis of Poly(N-isopropylacrylamide) on Initiator-Modified Self-Assembled Monolayers , 2001 .

[63]  L. Liz‐Marzán,et al.  Catalysis by Au@pNIPAM Nanocomposites: Effect of the Cross-Linking Density , 2010 .

[64]  Enas M. Ahmed,et al.  Hydrogel: Preparation, characterization, and applications: A review , 2013, Journal of advanced research.

[65]  F. Zhang,et al.  Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[66]  T. Niidome,et al.  PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser. , 2009, Bioconjugate chemistry.

[67]  Rafael Contreras-Cáceres,et al.  Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross‐linking, Overall Dimensions, and Core Growth , 2009 .

[68]  E. Kumacheva,et al.  Microgels loaded with gold nanorods: photothermally triggered volume transitions under physiological conditions. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[69]  Albert P. Philipse,et al.  Magnetic silica dispersions: preparation and stability of surface-modified silica particles with a magnetic core , 1994 .