The athermal component of the flow stress in crystalline solids
暂无分享,去创建一个
[1] A. D. McQuillan,et al. The science technology and application of titanium , 1971 .
[2] K. Okazaki,et al. A comparison of the athermal component of the flow stress in alpha titanium determined by several methods , 1970 .
[3] F. Guiu. On the measurement of internal stress by stress relaxation , 1969 .
[4] W. Nix,et al. A technique for measuring mean internal stress during high temperature creep , 1969 .
[5] S. Macewen,et al. An investigation of an incremental unloading technique for estimating internal stresses , 1969 .
[6] W. Nix,et al. Effect of internal stresses on the apparent stress dependence of dislocation velocities , 1969 .
[7] H. Gegel,et al. Thermally Activated Deformation in Alpha Titanium. , 1969 .
[8] T. Geszti,et al. Internal stresses and dislocation distribution , 1969 .
[9] P. Kelly,et al. Stress relaxation and the use of the Johnston-Gilman equation in the analysis of thermally activated flow in α-iron , 1969 .
[10] H. Conrad,et al. Stress relaxation and thermally activated deformation in titanium , 1969 .
[11] F. Guiu. The Influence of Internal Stress Fields on the Velocity of Dislocations , 1969 .
[12] W. Nix,et al. An Analysis of the Thermodynamics of Dislocation Glide , 1969 .
[13] M. Wilkens. Reply to the note “on internal stresses due to a random distribution of dislocations” , 1968 .
[14] S. Ben-abraham. On internal stresses due to a random distribution of dislocations , 1968 .
[15] H. Alexander. Elektronenmikroskopie eingefrorener Versetzungen. II. Ergebnisse in den Bereichen I und II der Verfestigungskurve , 1968 .
[16] R. Zeyfang. Der Gitterwärmewiderstand durch Versetzungen in Legierungen bei tiefen Temperaturen , 1967, November 1.
[17] E. Smith. The mobility of dislocations in an internally stressed solid. II , 1967 .
[18] R. Arsenault,et al. Thermally activated dislocation motion in a periodic internal stress field , 1967 .
[19] U. F. Kocks. On internal stresses due to a quasiuniform distribution of dislocations , 1967 .
[20] M. Wllkens. Letter to the EditorReply to the note “On internal stresses due to a quasi-uniform distribution of dislocation” , 1967 .
[21] M. Wllkens. Das Spannungsfeld einer Anordnung von regellos verteilten Versetzungen , 1967 .
[22] K. Adams. Basal Dislocation Mobility in Zinc Single Crystals , 1967 .
[23] J. Li,et al. DISLOCATION DYNAMICS IN DEFORMATION AND RECOVERY , 1967 .
[24] H. Kronmüller. ON THE MECHANISM OF WORK HARDENING IN f.c.c. METALS , 1967 .
[25] F. Young,et al. STUDY OF DISLOCATIONS IN LIGHTLY DEFORMED COPPER CRYSTALS USING BORRMANN X-RAY TOPOGRAPHY , 1967 .
[26] K. Evans,et al. An Interpretation of the Dislocation Velocity-Stress Exponent , 1967 .
[27] H. Conrad. The rate controlling mechanism during yielding and flow of α-titanium at temperatures below 0.4 TM , 1966 .
[28] F. Ramsteiner. Versetzungsanordnung und Verfestigung im Bereich II plastisch verformter Goldeinkristalle , 1966 .
[29] G. B. Gibbs. Creep and stress relaxation studies with polycrystalline magnesium , 1966 .
[30] G. Schoeck. The Activation Energy of Dislocation Movement , 1965, February 1.
[31] U. Essmann. Elektronenmikroskopische Untersuchung der Versetzungsanordnung verformter Kupfereinkristalle II. Die Versetzungsanordnung im Bereich II , 1965 .
[32] G. B. Gibbs. The Thermodynamics of Thermally-Activated Dislocation Glide , 1965 .
[33] G. B. Gibbs. The Thermodynamics of Creep Deformation , 1964, 1964.
[34] A. K. Head,et al. Dislocation Multipoles and Their Role in Strain-Hardening , 1964 .
[35] G. B. Gibbs. Temperature Dependence of Creep Activation Energies , 1964 .
[36] P. W. Osborne. Thermal activation energies for the low temperature deformation of metals , 1963 .
[37] H. Conrad,et al. Activation energy for deformation of metals at low temperatures , 1960 .
[38] J. Koehler,et al. Interaction of Dislocations with an Applied Stress in Anisotropic Crystals , 1959 .