The athermal component of the flow stress in crystalline solids

[1]  A. D. McQuillan,et al.  The science technology and application of titanium , 1971 .

[2]  K. Okazaki,et al.  A comparison of the athermal component of the flow stress in alpha titanium determined by several methods , 1970 .

[3]  F. Guiu On the measurement of internal stress by stress relaxation , 1969 .

[4]  W. Nix,et al.  A technique for measuring mean internal stress during high temperature creep , 1969 .

[5]  S. Macewen,et al.  An investigation of an incremental unloading technique for estimating internal stresses , 1969 .

[6]  W. Nix,et al.  Effect of internal stresses on the apparent stress dependence of dislocation velocities , 1969 .

[7]  H. Gegel,et al.  Thermally Activated Deformation in Alpha Titanium. , 1969 .

[8]  T. Geszti,et al.  Internal stresses and dislocation distribution , 1969 .

[9]  P. Kelly,et al.  Stress relaxation and the use of the Johnston-Gilman equation in the analysis of thermally activated flow in α-iron , 1969 .

[10]  H. Conrad,et al.  Stress relaxation and thermally activated deformation in titanium , 1969 .

[11]  F. Guiu The Influence of Internal Stress Fields on the Velocity of Dislocations , 1969 .

[12]  W. Nix,et al.  An Analysis of the Thermodynamics of Dislocation Glide , 1969 .

[13]  M. Wilkens Reply to the note “on internal stresses due to a random distribution of dislocations” , 1968 .

[14]  S. Ben-abraham On internal stresses due to a random distribution of dislocations , 1968 .

[15]  H. Alexander Elektronenmikroskopie eingefrorener Versetzungen. II. Ergebnisse in den Bereichen I und II der Verfestigungskurve , 1968 .

[16]  R. Zeyfang Der Gitterwärmewiderstand durch Versetzungen in Legierungen bei tiefen Temperaturen , 1967, November 1.

[17]  E. Smith The mobility of dislocations in an internally stressed solid. II , 1967 .

[18]  R. Arsenault,et al.  Thermally activated dislocation motion in a periodic internal stress field , 1967 .

[19]  U. F. Kocks On internal stresses due to a quasiuniform distribution of dislocations , 1967 .

[20]  M. Wllkens Letter to the EditorReply to the note “On internal stresses due to a quasi-uniform distribution of dislocation” , 1967 .

[21]  M. Wllkens Das Spannungsfeld einer Anordnung von regellos verteilten Versetzungen , 1967 .

[22]  K. Adams Basal Dislocation Mobility in Zinc Single Crystals , 1967 .

[23]  J. Li,et al.  DISLOCATION DYNAMICS IN DEFORMATION AND RECOVERY , 1967 .

[24]  H. Kronmüller ON THE MECHANISM OF WORK HARDENING IN f.c.c. METALS , 1967 .

[25]  F. Young,et al.  STUDY OF DISLOCATIONS IN LIGHTLY DEFORMED COPPER CRYSTALS USING BORRMANN X-RAY TOPOGRAPHY , 1967 .

[26]  K. Evans,et al.  An Interpretation of the Dislocation Velocity-Stress Exponent , 1967 .

[27]  H. Conrad The rate controlling mechanism during yielding and flow of α-titanium at temperatures below 0.4 TM , 1966 .

[28]  F. Ramsteiner Versetzungsanordnung und Verfestigung im Bereich II plastisch verformter Goldeinkristalle , 1966 .

[29]  G. B. Gibbs Creep and stress relaxation studies with polycrystalline magnesium , 1966 .

[30]  G. Schoeck The Activation Energy of Dislocation Movement , 1965, February 1.

[31]  U. Essmann Elektronenmikroskopische Untersuchung der Versetzungsanordnung verformter Kupfereinkristalle II. Die Versetzungsanordnung im Bereich II , 1965 .

[32]  G. B. Gibbs The Thermodynamics of Thermally-Activated Dislocation Glide , 1965 .

[33]  G. B. Gibbs The Thermodynamics of Creep Deformation , 1964, 1964.

[34]  A. K. Head,et al.  Dislocation Multipoles and Their Role in Strain-Hardening , 1964 .

[35]  G. B. Gibbs Temperature Dependence of Creep Activation Energies , 1964 .

[36]  P. W. Osborne Thermal activation energies for the low temperature deformation of metals , 1963 .

[37]  H. Conrad,et al.  Activation energy for deformation of metals at low temperatures , 1960 .

[38]  J. Koehler,et al.  Interaction of Dislocations with an Applied Stress in Anisotropic Crystals , 1959 .