The olivo-cerebellar system: a key to understanding the functional significance of intrinsic oscillatory brain properties

The reflexological view of brain function (Sherrington, 1906) has played a crucial role in defining both the nature of connectivity and the role of the synaptic interactions among neuronal circuits. One implicit assumption of this view, however, has been that CNS function is fundamentally driven by sensory input. This view was questioned as early as the beginning of the last century when a possible role for intrinsic activity in CNS function was proposed by Thomas Graham Brow (Brown, 1911, 1914). However, little progress was made in addressing intrinsic neuronal properties in vertebrates until the discovery of calcium conductances in vertebrate central neurons leading dendritic electroresponsiveness (Llinás and Hess, 1976; Llinás and Sugimori, 1980a,b) and subthreshold neuronal oscillation in mammalian inferior olive (IO) neurons (Llinás and Yarom, 1981a,b). This happened in parallel with a similar set of findings concerning invertebrate neuronal system (Marder and Bucher, 2001). The generalization into a more global view of intrinsic rhythmicity, at forebrain level, occurred initially with the demonstration that the thalamus has similar oscillatory properties (Llinás and Jahnsen, 1982) and the ionic properties responsible for some oscillatory activity were, in fact, similar to those in the IO (Jahnsen and Llinás, 1984; Llinás, 1988). Thus, lending support to the view that not only motricity, but cognitive properties, are organized as coherent oscillatory states (Pare et al., 1992; Singer, 1993; Hardcastle, 1997; Llinás et al., 1998; Varela et al., 2001).

[1]  J. Deuchars,et al.  Role of Olivary Electrical Coupling in Cerebellar Motor Learning , 2008, Neuron.

[2]  J. Voogd,et al.  Intracellular labeling of neurons in the medial accessory olive of the cat: II Ultrastructure of dendritic spines and their gabaergic innervation , 1990, The Journal of comparative neurology.

[3]  E. J. Lang,et al.  GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. , 2002, Journal of neurophysiology.

[4]  J. Eccles,et al.  Inhibitory systems in the cerebellar cortex. , 1965, Proceedings of the Australian Association of Neurologists.

[5]  R. Llinás,et al.  Morphological Correlates of Bilateral Synchrony in the Rat Cerebellar Cortex , 1996, The Journal of Neuroscience.

[6]  W Singer,et al.  Role of the temporal domain for response selection and perceptual binding. , 1997, Cerebral cortex.

[7]  R. Llinás,et al.  Role of the hippocampal-entorhinal loop in temporal lobe epilepsy: extra- and intracellular study in the isolated guinea pig brain in vitro , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  M. Ito,et al.  The origin of cerebellar-induced inhibition of Deiters neurones I. Monosynaptic initiation of the inhibitory postsynaptic potentials , 2004, Experimental Brain Research.

[9]  E. J. Lang,et al.  Organization of Olivocerebellar Activity in the Absence of Excitatory Glutamatergic Input , 2001, The Journal of Neuroscience.

[10]  W. T. Thach,et al.  Purkinje cell activity during motor learning , 1977, Brain Research.

[11]  D. Armstrong,et al.  A quantitative study of the purkinje cells in the cerebellum of the albino rat , 1970, The Journal of comparative neurology.

[12]  C. A. Fox,et al.  A quantitative study of the Purkinje cell dendritic branchlets and their relationship to afferent fibres. , 1957, Journal of anatomy.

[13]  R. Llinás,et al.  Tetrodotoxin-resistant dendritic spikes in avian Purkinje cells. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Michael Ariel,et al.  Latencies of climbing fiber inputs to turtle cerebellar cortex. , 2005, Journal of neurophysiology.

[15]  E. Mugnaini,et al.  The GABAergic cerebello-olivary projection in the rat , 2005, Anatomy and Embryology.

[16]  Idan Segev,et al.  The Generation of Phase Differences and Frequency Changes in a Network Model of Inferior Olive Subthreshold Oscillations , 2012, PLoS Comput. Biol..

[17]  R. Llinás,et al.  GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. , 1996, Journal of neurophysiology.

[18]  Idan Segev,et al.  Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. , 1997, Journal of neurophysiology.

[19]  R. Llinás,et al.  Oscillatory properties of guinea‐pig inferior olivary neurones and their pharmacological modulation: an in vitro study. , 1986, The Journal of physiology.

[20]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[21]  R. Llinás The cortex of the cerebellum. , 1975, Scientific American.

[22]  R. Llinás,et al.  The neuronal basis for consciousness. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  M. Häusser,et al.  Encoding of Oscillations by Axonal Bursts in Inferior Olive Neurons , 2009, Neuron.

[24]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[25]  J. Wessberg,et al.  Organization of motor output in slow finger movements in man. , 1993, The Journal of physiology.

[26]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[27]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[28]  K. Doya,et al.  Cerebellar aminergic neuromodulation: towards a functional understanding , 2004, Brain Research Reviews.

[29]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[30]  Ilan Lampl,et al.  Rhythmic Episodes of Subthreshold Membrane Potential Oscillations in the Rat Inferior Olive Nuclei In Vivo , 2007, The Journal of Neuroscience.

[31]  Michael F Saffir,et al.  A dynamic organization. , 2014, Connecticut medicine.

[32]  E. Marder,et al.  Central pattern generators and the control of rhythmic movements , 2001, Current Biology.

[33]  P. Castillo,et al.  The extent and strength of electrical coupling between inferior olivary neurons is heterogeneous. , 2011, Journal of neurophysiology.

[34]  Michael A Long,et al.  Rhythmicity without Synchrony in the Electrically Uncoupled Inferior Olive , 2002, The Journal of Neuroscience.

[35]  J. Voogd,et al.  Mesodiencephalic and cerebellar terminals terminate upon the same dendritic spines in the glomeruli of the cat and rat inferior olive: An ultrastructural study using a combination of [3H]-leucine and wheat germ agglutinin coupled horseradish peroxidase anterograde tracing , 1990, Neuroscience.

[36]  V. Hardcastle Consciousness and the Neurobiology of Perceptual Binding , 1997, Seminars in neurology.

[37]  D. Whitteridge Movements of the eyes R. H. S. Carpenter, Pion Ltd, London (1977), 420 pp., $27.00 , 1979, Neuroscience.

[38]  Yosef Yarom,et al.  A model of the olivo-cerebellar system as a temporal pattern generator , 2008, Trends in Neurosciences.

[39]  C. Sherrington Integrative Action of the Nervous System , 1907 .

[40]  R. Llinás,et al.  Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. , 1981, The Journal of physiology.

[41]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. , 1980, The Journal of physiology.

[42]  T. Tsumoto,et al.  Change of conduction velocity by regional myelination yields constant latency irrespective of distance between thalamus and cortex , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Yoshiko Kojima,et al.  Changes in Simple Spike Activity of Some Purkinje Cells in the Oculomotor Vermis during Saccade Adaptation Are Appropriate to Participate in Motor Learning , 2010, The Journal of Neuroscience.

[44]  Laurentiu S. Popa,et al.  Predictive and Feedback Performance Errors Are Signaled in the Simple Spike Discharge of Individual Purkinje Cells , 2012, The Journal of Neuroscience.

[45]  Thomas Knöpfel,et al.  Functional Classification of Neurons in the Mouse Lateral Cerebellar Nuclei , 2010, The Cerebellum.

[46]  K. Doya,et al.  Chaos may enhance information transmission in the inferior olive. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Anna Devor,et al.  Deformation of Network Connectivity in the Inferior Olive of Connexin 36-Deficient Mice Is Compensated by Morphological and Electrophysiological Changes at the Single Neuron Level , 2003, The Journal of Neuroscience.

[48]  R. Llinás,et al.  Role of gap junctions in synchronized neuronal oscillations in the inferior olive. , 2005, Journal of neurophysiology.

[49]  C. Sotelo,et al.  Localization of glutamic‐acid‐decarboxylase‐immunoreactive axon terminals in the inferior olive of the rat, with special emphasis on anatomical relations between GABAergic synapses and dendrodendritic gap junctions , 1986, The Journal of comparative neurology.

[50]  R. Llinás,et al.  Eighteenth Bowditch lecture. Motor aspects of cerebellar control. , 1974, The Physiologist.

[51]  Timothy J. Ebner,et al.  Purkinje Cell Simple Spike Discharge Encodes Error Signals Consistent with a Forward Internal Model , 2013, The Cerebellum.

[52]  R. Llinás,et al.  In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns , 2007, Proceedings of the National Academy of Sciences.

[53]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[54]  R. Llinás,et al.  Electrophysiology of guinea‐pig cerebellar nuclear cells in the in vitro brain stem‐cerebellar preparation. , 1988, The Journal of physiology.

[55]  J. Szentágothai,et al.  Über den Ursprung der Kletterfasern des Kleinhirns , 1959, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[56]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[57]  Robert E. Foster,et al.  Oscillatory behavior in inferior olive neurons: Mechanism, modulation, cell aggregates , 1986, Brain Research Bulletin.

[58]  Vladimir I. Nekorkin,et al.  Modeling inferior olive neuron dynamics , 2002, Neural Networks.

[59]  Y. Yarom,et al.  Electrotonic coupling in the inferior olivary nucleus revealed by simultaneous double patch recordings. , 2002, Journal of neurophysiology.

[60]  Izumi Sugihara,et al.  Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat , 2006, The Journal of physiology.

[61]  Kris M. Horn,et al.  Discharge of inferior olive cells during reaching errors and perturbations , 2004, Brain Research.

[62]  I. Lampl,et al.  Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism , 1997, Neuroscience.

[63]  R Llinás,et al.  Some organizing principles for the control of movement based on olivocerebellar physiology. , 1997, Progress in brain research.

[64]  T. Brown On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system , 1914, The Journal of physiology.

[65]  Douglas R. Wylie,et al.  More on climbing fiber signals and their consequence(s) , 1996 .

[66]  R. Llinás,et al.  Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. , 1981, The Journal of physiology.

[67]  J. Voogd,et al.  Cerebellar Influence on Olivary Excitability in the Cat , 1995, The European journal of neuroscience.

[68]  M. Bennett,et al.  Electrical synapses, a personal perspective (or history) , 2000, Brain Research Reviews.

[69]  T. Brown The intrinsic factors in the act of progression in the mammal , 1911 .

[70]  Anna Devor,et al.  To beat or not to beat: A decision taken at the network level , 2000, Journal of Physiology-Paris.

[71]  K. Doya,et al.  Electrophysiological properties of inferior olive neurons: A compartmental model. , 1999, Journal of neurophysiology.

[72]  Chris I. De Zeeuw,et al.  Climbing Fiber Burst Size and Olivary Sub-threshold Oscillations in a Network Setting , 2012, PLoS Comput. Biol..

[73]  R Llinás,et al.  The action of antidromic impulses on the cerebellar Purkinje cells , 1966, The Journal of physiology.

[74]  Leonardo L. Gollo,et al.  Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays , 2008, Proceedings of the National Academy of Sciences.

[75]  R. Llinás,et al.  Experimentally determined chaotic phase synchronization in a neuronal system. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[76]  T. Ebner,et al.  Use of voltage-sensitive dyes and optical recordings in the central nervous system , 1995, Progress in Neurobiology.

[77]  N. Belluardo,et al.  Expression of Connexin36 in the adult and developing rat brain 1 1 Published on the World Wide Web on 12 April 2000. , 2000, Brain Research.

[78]  Hee-Sup Shin,et al.  Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q‐ and T‐type calcium channels: a study in mutant mice , 2010, The Journal of physiology.

[79]  W. T. Thach Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. , 1968, Journal of neurophysiology.

[80]  C. S. S.,et al.  The Comparative Anatomy of the Nervous System of Vertebrates, including Man , 1937, Nature.

[81]  S. Farmer,et al.  Rhythmicity, synchronization and binding in human and primate motor systems , 1998, The Journal of physiology.

[82]  F. Dudek,et al.  Cell-Specific Expression of Connexins and Evidence of Restricted Gap Junctional Coupling between Glial Cells and between Neurons , 2001, The Journal of Neuroscience.

[83]  N. Belluardo,et al.  Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons , 1998, The European journal of neuroscience.

[84]  Michael Ariel,et al.  Topography and response timing of intact cerebellum stained with absorbance voltage-sensitive dye. , 2009, Journal of neurophysiology.

[85]  S. Khosrovani,et al.  Olivary subthreshold oscillations and burst activity revisited , 2012, Front. Neural Circuits.

[86]  R. Llinás,et al.  Somatomotor and oculomotor inferior olivary neurons have distinct electrophysiological phenotypes , 2006, Proceedings of the National Academy of Sciences.

[87]  R. Llinás,et al.  Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. , 1993, The Journal of physiology.

[88]  R. R. Llinás,et al.  Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction , 2009, Neuroscience.

[89]  V I Makarenko,et al.  On the Amazing Olivocerebellar System , 2002, Annals of the New York Academy of Sciences.

[90]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[91]  W. Regehr,et al.  Inhibitory Regulation of Electrically Coupled Neurons in the Inferior Olive Is Mediated by Asynchronous Release of GABA , 2009, Neuron.

[92]  B. Hu,et al.  Functional architecture and spike timing properties of corticofugal projections from rat ventral temporal cortex. , 2008, Journal of neurophysiology.

[93]  M. Mauk,et al.  Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses , 2002, Nature.

[94]  R. Llinás,et al.  Electrotonic coupling between neurons in cat inferior olive. , 1974, Journal of neurophysiology.

[95]  Y Yarom,et al.  The Olivocerebellar System as a Generator of Temporal Patterns , 2002, Annals of the New York Academy of Sciences.

[96]  J. Eccles,et al.  Intracellularly recorded responses of the cerebellar Purkinje cells , 2004, Experimental Brain Research.

[97]  D. McCormick,et al.  Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). , 1997, Journal of neurophysiology.

[98]  C. Kappers,et al.  The comparative anatomy of the nervous system of vertebrates, including man , 1936 .

[99]  R. Llinás,et al.  Electrophysiology of mammalian thalamic neurones in vitro , 1982, Nature.

[100]  Peter Thier,et al.  Cerebellar Complex Spike Firing Is Suitable to Induce as Well as to Stabilize Motor Learning , 2005, Current Biology.

[101]  R. Llinás,et al.  Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. , 1974, Journal of neurophysiology.

[102]  Elena Leznik,et al.  Electrotonically Mediated Oscillatory Patterns in Neuronal Ensembles: An In Vitro Voltage-Dependent Dye-Imaging Study in the Inferior Olive , 2002, The Journal of Neuroscience.