Atom probe tomography of nitride semiconductors

Atom probe tomography (APT) has emerged as a valuable tool in the study of nitride semiconductors, despite the challenges involved in achieving controlled field evaporation. In optoelectronics, it has provided insights into the nanostructure of light emitting diodes, laser diodes and microwires. In electronics, it has allowed insights into impurity doping and alloying effects in transistors. Coupled with direct correlative studies using other techniques and theoretical modelling based on the APT data, the availability of three dimensional compositional information on nitride heterostructures has had (and will continue to have) a profound impact on the design and development of devices.

[1]  Colin J. Humphreys,et al.  Electron-beam-induced strain within InGaN quantum wells: False indium “cluster” detection in the transmission electron microscope , 2003 .

[2]  C. Humphreys,et al.  The nature of carrier localisation in polar and nonpolar InGaN/GaN quantum wells , 2016 .

[3]  S. Sinnott,et al.  Behavior of molecules and molecular ions near a field emitter , 2015, 1511.09029.

[4]  L. Lauhon,et al.  On the reliable analysis of indium mole fraction within InxGa1−xN quantum wells using atom probe tomography , 2014 .

[5]  J. Eymery,et al.  Correlation of microphotoluminescence spectroscopy, scanning transmission electron microscopy, and atom probe tomography on a single nano-object containing an InGaN/GaN multiquantum well system. , 2014, Nano letters.

[6]  P. Hinze,et al.  Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency. , 2005, Physical review letters.

[7]  H. Espinosa,et al.  Characterizing Atomic Composition and Dopant Distribution in Wide Band Gap Semiconductor Nanowires Using Laser-Assisted Atom Probe Tomography , 2011 .

[8]  Didier Blavette,et al.  Statistical nanoscale study of localised radiative transitions in GaN/AlGaN quantum wells and AlGaN epitaxial layers , 2016 .

[9]  C. Park,et al.  Composition Fluctuation of In and Well-Width Fluctuation in InGaN/GaN Multiple Quantum Wells in Light-Emitting Diode Devices , 2013, Microscopy and Microanalysis.

[10]  C. G. Park,et al.  Effects of growth pressure on the structural and optical properties of multi quantum wells (MQWs) in blue LED. , 2013, Ultramicroscopy.

[11]  P. Burke,et al.  GaN-based high-electron-mobility transistor structures with homogeneous lattice-matched InAlN barriers grown by plasma-assisted molecular beam epitaxy , 2014 .

[12]  S. Duguay,et al.  Investigation of dopant clustering and segregation to defects in semiconductors using atom probe tomography , 2016 .

[13]  C. Humphreys,et al.  Microstructural origins of localization in InGaN quantum wells , 2010 .

[14]  B. Gorman,et al.  Atom probe tomography evaporation behavior of C-axis GaN nanowires: Crystallographic, stoichiometric, and detection efficiency aspects , 2013 .

[15]  R. A. Oliver,et al.  Carrier localization mechanisms in InxGa1?xN/GaN quantum wells , 2010, 1006.1232.

[16]  B. Gorman,et al.  Laser‐assisted atom probe tomography of MBE grown GaN nanowire heterostructures , 2014 .

[17]  Christian Kisielowski,et al.  Comment on “Three-dimensional atom probe studies of an InxGa1−xN∕GaN multiple quantum well structure: Assessment of possible indium clustering” [Appl. Phys. Lett. 90, 061903 (2007)] , 2007 .

[18]  P. Bagot,et al.  Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography , 2015 .

[19]  Alfred Cerezo,et al.  Three-dimensional atom probe analysis of green- and blue-emitting InxGa1−xN∕GaN multiple quantum well structures , 2008 .

[20]  David J. Smith,et al.  Observation of vertical honeycomb structure in InAlN∕GaN heterostructures due to lateral phase separation , 2007 .

[21]  D. Kingham The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states , 1982 .

[22]  G. Smith,et al.  Phase separation in thick InGaN layers – A quantitative, nanoscale study by pulsed laser atom probe tomography , 2012 .

[23]  C. Humphreys,et al.  Compositional inhomogeneity of a high-efficiency InxGa1-xN based multiple quantum well ultraviolet emitter studied by three dimensional atom probe , 2008 .

[24]  H. Kreuzer,et al.  Field evaporation of ZnO: A first-principles study , 2015 .

[25]  Shuji Nakamura,et al.  Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm , 1997 .

[26]  Colin J. Humphreys,et al.  Atom probe tomography assessment of the impact of electron beam exposure on InxGa1−xN/GaN quantum wells , 2011 .

[27]  Ping Lu,et al.  Three-dimensional mapping of quantum wells in a GaN/InGaN core-shell nanowire light-emitting diode array. , 2013, Nano letters.

[28]  H. Kreuzer,et al.  The Mystery of Missing Species in Atom Probe Tomography of Composite Materials , 2015, Microscopy and Microanalysis.

[29]  J. Speck,et al.  Observation of columnar microstructure in lattice-matched InAlN/GaN grown by plasma assisted molecular beam epitaxy , 2012 .

[30]  P. Bagot,et al.  Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials , 2015, Microscopy and Microanalysis.

[31]  T. Ohkubo,et al.  Atomic scale characterization of GaInN/GaN multiple quantum wells in V-shaped pits , 2011 .

[32]  U. Mishra,et al.  Asymmetric interfacial abruptness in N-polar and Ga-polar GaN/AlN/GaN heterostructures , 2012 .

[33]  James S. Speck,et al.  Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure , 2012 .

[34]  J. Speck,et al.  Electron transport in unipolar InGaN/GaN multiple quantum well structures grown by NH3 molecular beam epitaxy , 2015 .

[35]  Anurag Tyagi,et al.  Atom probe analysis of interfacial abruptness and clustering within a single InxGa1−xN quantum well device on semipolar (101¯1¯) GaN substrate , 2011 .

[36]  U. Mishra,et al.  Atom probe analysis of AlN interlayers in AlGaN/AlN/GaN heterostructures , 2013 .

[37]  Horacio D Espinosa,et al.  Atom probe tomography of a-axis GaN nanowires: analysis of nonstoichiometric evaporation behavior. , 2012, ACS nano.

[38]  Demonstration of isotype GaN/AlN/GaN heterobarrier diodes by NH3-molecular beam epitaxy , 2015 .

[39]  S. Denbaars,et al.  Hybrid tunnel junction contacts to III–nitride light-emitting diodes , 2016 .

[40]  R. Oliver Critical Assessment 23: Gallium nitride-based visible light-emitting diodes , 2016 .

[41]  E. O’Reilly,et al.  Structural, electronic, and optical properties of m -plane InGaN/GaN quantum wells: Insights from experiment and atomistic theory , 2015, 1509.07099.

[42]  E. Hu,et al.  Effect of Threading Dislocations on the Quality Factor of InGaN/GaN Microdisk Cavities , 2014, ACS photonics.

[43]  C. Humphreys,et al.  Three-Dimensional Atom Probe Characterisation of III-Nitride Quantum Well Structures , 2008 .

[44]  C. Humphreys,et al.  Atom probe tomography and transmission electron microscopy of a Mg-doped AlGaN/GaN superlattice. , 2011, Ultramicroscopy.

[45]  E. Alves,et al.  Depth-resolved analysis of spontaneous phase separation in the growth of lattice-matched AlInN , 2010 .

[46]  B. V. Shanabrook,et al.  Molecular beam epitaxy of InAlN∕GaN heterostructures for high electron mobility transistors , 2005 .

[47]  X. Portier,et al.  Composition of Wide Bandgap Semiconductor Materials and Nanostructures Measured by Atom Probe Tomography and Its Dependence on the Surface Electric Field , 2014 .

[48]  Eric A. Stach,et al.  Revisiting the “In-clustering” question in InGaN through the use of aberration-corrected electron microscopy below the knock-on threshold , 2013 .

[49]  W. Hess,et al.  Role of Photoexcitation and Field Ionization in the Measurement of Accurate Oxide Stoichiometry by Laser-Assisted Atom Probe Tomography. , 2013, The journal of physical chemistry letters.

[50]  J. Eymery,et al.  Multi-microscopy study of the influence of stacking faults and three-dimensional In distribution on the optical properties of m-plane InGaN quantum wells grown on microwire sidewalls , 2016 .

[51]  U. Mishra,et al.  Pure AlN layers in metal-polar AlGaN/AlN/GaN and AlN/GaN heterostructures grown by low-temperature ammonia-based molecular beam epitaxy , 2015 .

[52]  P. Park,et al.  Unipolar Vertical Transport in GaN/AlGaN/GaN Heterostructures , 2013, 1302.3942.

[53]  D. Saxey,et al.  Correlated ion analysis and the interpretation of atom probe mass spectra. , 2011, Ultramicroscopy.

[54]  S. Bennett Nitride semiconductors studied by atom probe tomography and correlative techniques , 2011 .

[55]  J. Carlin,et al.  Statistical correction of atom probe tomography data of semiconductor alloys combined with optical spectroscopy: The case of Al0.25Ga0.75N , 2016 .