Single-molecule fluorescence measurements of ribosomal translocation dynamics.

We employ single-molecule fluorescence resonance energy transfer (smFRET) to study structural dynamics over the first two elongation cycles of protein synthesis, using ribosomes containing either Cy3-labeled ribosomal protein L11 and A- or P-site Cy5-labeled tRNA or Cy3- and Cy5-labeled tRNAs. Pretranslocation (PRE) complexes demonstrate fluctuations between classical and hybrid forms, with concerted motions of tRNAs away from L11 and from each other when classical complex converts to hybrid complex. EF-G⋅GTP binding to both hybrid and classical PRE complexes halts these fluctuations prior to catalyzing translocation to form the posttranslocation (POST) complex. EF-G dependent translocation from the classical PRE complex proceeds via transient formation of a short-lived hybrid intermediate. A-site binding of either EF-G to the PRE complex or of aminoacyl-tRNA⋅EF-Tu ternary complex to the POST complex markedly suppresses ribosome conformational lability.

[1]  Colin Echeverría Aitken,et al.  GTP hydrolysis by IF2 guides progression of the ribosome into elongation. , 2009, Molecular cell.

[2]  Daniel N. Wilson,et al.  EF-G-dependent GTPase on the ribosome. conformational change and fusidic acid inhibition. , 2006, Biochemistry.

[3]  Taekjip Ha,et al.  Following movement of the L1 stalk between three functional states in single ribosomes , 2009, Proceedings of the National Academy of Sciences.

[4]  Justin E. Molloy,et al.  The gated gait of the processive molecular motor, myosin V , 2002, Nature Cell Biology.

[5]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[6]  Ruben L. Gonzalez,et al.  Coupling of Ribosomal L1 Stalk and tRNA Dynamics during Translation Elongation , 2009 .

[7]  B. Cooperman,et al.  Perturbation of the tRNA Tertiary Core Differentially Affects Specific Steps of the Elongation Cycle* , 2008, Journal of Biological Chemistry.

[8]  Graham T Dempsey,et al.  Single-molecule structural dynamics of EF-G--ribosome interaction during translocation. , 2007, Biochemistry.

[9]  James B. Munro,et al.  Spontaneous formation of the unlocked state of the ribosome is a multistep process , 2009, Proceedings of the National Academy of Sciences.

[10]  J. Puglisi,et al.  tRNA selection and kinetic proofreading in translation , 2004, Nature Structural &Molecular Biology.

[11]  P. Dennis,et al.  mRNA Composition and Control of Bacterial Gene Expression , 2000, Journal of bacteriology.

[12]  Jake M. Hofman,et al.  Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation , 2009, Proceedings of the National Academy of Sciences.

[13]  Ernesto I. Gonzalez de Valdivia,et al.  Abortive translation caused by peptidyl‐tRNA drop‐off at NGG codons in the early coding region of mRNA , 2005, The FEBS journal.

[14]  J. Frank,et al.  Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu , 2009, Quarterly Reviews of Biophysics.

[15]  Joseph D Puglisi,et al.  Single ribosome dynamics and the mechanism of translation. , 2010, Annual review of biophysics.

[16]  Måns Ehrenberg,et al.  Peptidyl-tRNA Regulates the GTPase Activity of Translation Factors , 2003, Cell.

[17]  Hani S. Zaher,et al.  Fidelity at the Molecular Level: Lessons from Protein Synthesis , 2009, Cell.

[18]  E. Lattman,et al.  Crystal structure of a conserved ribosomal protein-RNA complex. , 1999, Science.

[19]  Taekjip Ha,et al.  Spontaneous intersubunit rotation in single ribosomes. , 2008, Molecular cell.

[20]  M. Rodnina,et al.  The ribosome's response to codon-anticodon mismatches. , 2006, Biochimie.

[21]  Nam Ki Lee,et al.  Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Barry S. Cooperman,et al.  Role of hybrid tRNA-binding states in ribosomal translocation , 2008, Proceedings of the National Academy of Sciences.

[23]  Christian M T Spahn,et al.  Navigating the ribosome's metastable energy landscape. , 2009, Trends in biochemical sciences.

[24]  Jianlin Lei,et al.  Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. , 2008, Molecular cell.

[25]  Joseph D. Puglisi,et al.  Irreversible chemical steps control intersubunit dynamics during translation , 2008, Proceedings of the National Academy of Sciences.

[26]  Joachim Frank,et al.  Structure and dynamics of a processive Brownian motor: the translating ribosome. , 2010, Annual review of biochemistry.

[27]  W. B. Caldwell,et al.  Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Alexandros Katranidis,et al.  Fast biosynthesis of GFP molecules: a single-molecule fluorescence study. , 2009, Angewandte Chemie.

[29]  Steven Chu,et al.  tRNA dynamics on the ribosome during translation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Cate,et al.  Structures of the Ribosome in Intermediate States of Ratcheting , 2009, Science.

[31]  B. Cooperman,et al.  Fluorescent labeling of tRNA dihydrouridine residues: Mechanism and distribution. , 2011, RNA.

[32]  B. Cooperman,et al.  Kinetically competent intermediates in the translocation step of protein synthesis. , 2007, Molecular cell.

[33]  B. Cooperman,et al.  Synthesis and functional activity of tRNAs labeled with fluorescent hydrazides in the D-loop. , 2009, RNA.

[34]  James B. Munro,et al.  A fast dynamic mode of the EF‐G‐bound ribosome , 2010, The EMBO journal.

[35]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[36]  B. Cooperman,et al.  Interaction of IF2 with the ribosomal GTPase-associated center during 70S initiation complex formation. , 2009, Biochemistry.

[37]  S. Joseph,et al.  Kinetics of stop codon recognition by release factor 1. , 2009, Biochemistry.

[38]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[39]  M. Rodnina,et al.  Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome , 1997, Nature.

[40]  V. Ramakrishnan,et al.  What recent ribosome structures have revealed about the mechanism of translation , 2009, Nature.

[41]  S. Joseph,et al.  Non-bridging phosphate oxygen atoms within the tRNA anticodon stem-loop are essential for ribosomal A site binding and translocation. , 2005, Journal of molecular biology.

[42]  J. McCutcheon,et al.  A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.

[43]  Scott M Stagg,et al.  Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy , 2003, Nature Structural Biology.

[44]  Divya Sharma,et al.  The hybrid state of tRNA binding is an authentic translation elongation intermediate , 2006, Nature Structural &Molecular Biology.

[45]  M. Rodnina,et al.  Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine. , 2004, Biochemical Society transactions.

[46]  Måns Ehrenberg,et al.  How initiation factors tune the rate of initiation of protein synthesis in bacteria , 2006, The EMBO journal.

[47]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[48]  C. Gualerzi,et al.  A quantitative kinetic scheme for 70 S translation initiation complex formation. , 2007, Journal of molecular biology.

[49]  Nathan O'Connor,et al.  Identification of two distinct hybrid state intermediates on the ribosome. , 2007, Molecular cell.

[50]  Yong-Gui Gao,et al.  The Structure of the Ribosome with Elongation Factor G Trapped in the Posttranslocational State , 2009, Science.

[51]  Marina V. Rodnina,et al.  Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy , 2010, Nature.

[52]  R. L. Gonzalez,et al.  Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling , 2009, Nature Structural &Molecular Biology.

[53]  S. McKinney,et al.  Analysis of single-molecule FRET trajectories using hidden Markov modeling. , 2006, Biophysical journal.

[54]  V. Ramakrishnan,et al.  Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome , 2009, Nature Structural &Molecular Biology.

[55]  Colin Echeverría Aitken,et al.  Real-time tRNA transit on single translating ribosomes at codon resolution , 2010, Nature.

[56]  Marina V. Rodnina,et al.  Structural Basis for the Function of the Ribosomal L7/12 Stalk in Factor Binding and GTPase Activation , 2005, Cell.

[57]  T. Yanagida,et al.  Monitoring molecular beacon DNA probe hybridization at the single-molecule level. , 2003, Chemistry.

[58]  S. Blanchard Single-molecule observations of ribosome function. , 2009, Current opinion in structural biology.

[59]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[60]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[61]  Wolfgang Wintermeyer,et al.  An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. , 2003, Molecular cell.

[62]  Timothy M. Hall,et al.  Transit-Time and Tracer-Age Distributions in Geophysical Flows , 2000 .

[63]  Yong-Gui Gao,et al.  The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA , 2009, Science.

[64]  J. Elf,et al.  Selective charging of tRNA isoacceptors induced by amino‐acid starvation , 2005, EMBO reports.