Modelling and optimization of fermentation factors for enhancement of alkaline protease production by isolated Bacillus circulans using feed‐forward neural network and genetic algorithm

Aim:  Modelling and optimization of fermentation factors and evaluation for enhanced alkaline protease production by Bacillus circulans.

[1]  Duan Li,et al.  On Restart Procedures for the Conjugate Gradient Method , 2004, Numerical Algorithms.

[2]  Q. Beg,et al.  Bacterial alkaline proteases: molecular approaches and industrial applications , 2002, Applied Microbiology and Biotechnology.

[3]  K. Jayaraman,et al.  Application of numerical modeling for the development of optimized complex medium for D-hydantoinase production from Agrobacterium radiobacter NRRL B 11291. , 1997, Biotechnology and bioengineering.

[4]  C. Wandrey,et al.  Medium Optimization by Genetic Algorithm for Continuous Production of Formate Dehydrogenase , 1995 .

[5]  R Kamimura,et al.  Knowledge-based systems, artificial neural networks and pattern recognition: applications to biotechnological processes. , 1996, Current opinion in biotechnology.

[6]  S. Arai,et al.  Enzymatic Modification of Zein to Produce a Non-bitter Peptide Fraction with a Very High Fischer Ratio for Patients with Hepatic Encephalopathy , 1991 .

[7]  P. N. Sarma,et al.  Enhancement of acid amylase production by an isolated Aspergillus awamori , 2007, Journal of applied microbiology.

[8]  J Morris,et al.  Neural-network contributions in biotechnology. , 1994, Trends in biotechnology.

[9]  R. Sani,et al.  THERMOSTABLE ALKALINE PROTEASE FROM BACILLUS BREVIS AND ITS CHARACTERIZATION AS A LAUNDRY DETERGENT ADDITIVE , 1999 .

[10]  Archit Yajnik,et al.  Artificial neural network as an alternative to multiple regression analysis in optimizing formulation parmaeters of cytarabine liposomes , 2004, AAPS PharmSciTech.

[11]  M. Díaz-Castañeda,et al.  Production of Fish Protein Hydrolysates with Bacterial Proteases; Yield and Nutritional Value , 1991 .

[12]  Ch. Subba Rao,et al.  l‐asparaginase production by isolated Staphylococcus sp. – 6A: design of experiment considering interaction effect for process parameter optimization , 2007, Journal of applied microbiology.

[13]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[14]  N. Subramanian,et al.  Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes. , 2005, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[15]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[16]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[17]  P. N. Sarma,et al.  Alkaline Protease Production by an Isolated Bacilluscirculans under Solid‐State Fermentation Using Agroindustrial Waste: Process Parameters Optimization , 2005, Biotechnology progress.

[18]  R. Prakasham,et al.  The influence of inert solids on ethanol production by Saccharomyces cerevisiae , 1999, Applied biochemistry and biotechnology.

[19]  Rintu Banerjee,et al.  Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp. using response surface and artificial neural network models , 2004 .

[20]  H Honda,et al.  Application of an artificial neural network and genetic algorithm for determination of process orbits in the koji making process. , 1999, Journal of bioscience and bioengineering.

[21]  Ch. Subba Rao,et al.  Green gram husk--an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. , 2006, Bioresource technology.

[22]  R. M. Joyce Experiment optimization in chemistry and chemical engineering, S. Akhnazarova and V. Kafarov, Mir Publishers, Moscow and Chicago, 1982, 312 pp. Price: $9.95. , 1984 .

[23]  A. Cimerman,et al.  Optimization of fermentation medium by a modified method of genetic algorithms , 1996 .

[24]  J. A. Guijarro,et al.  Purification and Characterization of an Extracellular Protease from the Fish Pathogen Yersinia ruckeri and Effect of Culture Conditions on Production , 1999, Applied and Environmental Microbiology.

[25]  S R Paik,et al.  Oxidant and SDS‐stable alkaline protease from Bacillus clausii I‐52: production and some properties , 2003, Journal of applied microbiology.

[26]  K. K. Prasad,et al.  Xylitol production by Candida sp.: parameter optimization using Taguchi approach , 2004 .

[27]  A. Jetty,et al.  Optimization of critical medium components for the maximal production of gentamicin by Micromonospora echinospora ATCC 15838 using response surface methodology , 2006, Applied biochemistry and biotechnology.

[28]  Guangya Zhang,et al.  A uniform design-based back propagation neural network model for amino acid composition and optimal pH in G/11 xylanase , 2006 .

[29]  Chen Hongwen,et al.  Optimization of process parameters for key enzymes accumulation of 1,3-propanediol production from Klebsiella pneumoniae , 2005 .

[30]  Khim Hoong Chu,et al.  Optimization of a fermentation medium using neural networks and genetic algorithms , 2003, Biotechnology Letters.

[31]  C. Kumar,et al.  Microbial alkaline proteases: from a bioindustrial viewpoint. , 1999, Biotechnology advances.

[32]  Hagihara Bunji,et al.  Crystalline Bacterial Proteinase , 1958 .

[33]  David E Block,et al.  An integrated approach to optimization of Escherichia coli fermentations using historical data , 2003, Biotechnology and bioengineering.

[34]  P. Munro,et al.  Selection of a proteolytic enzyme to solubilize lean beef tissue , 1984 .

[35]  C. Tarı,et al.  Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats , 2006 .

[36]  Sanjeev S. Tambe,et al.  Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques , 2006 .

[37]  Chi-Hsien Liu,et al.  Medium optimization for glutathione production by Saccharomyces cerevisiae , 1999 .

[38]  P. N. Sarma,et al.  Strain improvement of Candida tropicalis for the production of xylitol: biochemical and physiological characterization of wild-type and mutant strain CT-OMV5. , 2006, Journal of microbiology.

[39]  P. N. Sarma,et al.  Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. , 2006, Bioresource technology.

[40]  B. Turk Targeting proteases: successes, failures and future prospects , 2006, Nature Reviews Drug Discovery.

[41]  Xie Xiaolan,et al.  Using genetic algorithms coupling neural networks in a study of xylitol production: medium optimisation , 2003 .

[42]  Y.-H. Zhu,et al.  Application of neural networks to lysine production , 1996 .

[43]  B. Kulkarni,et al.  Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN) , 2004 .

[44]  R. Boethling Regulation of extracellular protease secretion in Pseudomonas maltophilia , 1975, Journal of bacteriology.