Bandwidth Improvement Methods of Transmitarray Antennas

Despite several advantages of planar transmitarray antennas compared to conventional lens antennas, they have a narrow bandwidth. The goal of this paper is to improve the bandwidth of transmitarray antennas through the control of the transmission phase range and the optimization of the phase distribution on the transmitarray aperture. To validate the proposed approaches, two quad-layer transmitarrays using double square loop elements have been designed, fabricated, and tested at Ku-band. The transmission phase distribution is optimized for both antennas, while they differ only in the transmission phase ranges. It is shown that the transmitarray antennas designed using the proposed techniques achieve 1-dB gain bandwidth of 9.8% and 11.7%, respectively. The measured gains at 13.5 GHz are 30.22 and 29.95 dB, respectively, leading to aperture efficiencies of 50% and 47%, respectively.

[1]  A. Z. Elsherbeni,et al.  Radiation Analysis Approaches for Reflectarray Antennas [Antenna Designer's Notebook] , 2013, IEEE Antennas and Propagation Magazine.

[2]  Raj Mittra,et al.  On the Synthesis of a Flat Lens using a Wideband Low-Reflection Gradient-Index Metamaterial , 2011 .

[3]  Xin Lu,et al.  Dualband frequency selective surface with double-four-legged loaded slots elements , 2008, 2008 International Conference on Microwave and Millimeter Wave Technology.

[4]  Fan Yang,et al.  Transmission Phase Limit of Multilayer Frequency-Selective Surfaces for Transmitarray Designs , 2014, IEEE Transactions on Antennas and Propagation.

[5]  Qiang Cheng,et al.  Broadband planar Luneburg lens based on complementary metamaterials , 2009 .

[6]  T. Koleck,et al.  Wideband Low-Loss Linear and Circular Polarization Transmit-Arrays in V-Band , 2011, IEEE Transactions on Antennas and Propagation.

[7]  Weidong Li,et al.  Research progress on millimeter wave transmitarray in SKLMMW , 2012, 2012 4th International High Speed Intelligent Communication Forum.

[8]  Nader Behdad,et al.  Wideband True-Time-Delay Microwave Lenses Based on Metallo-Dielectric and All-Dielectric Lowpass Frequency Selective Surfaces , 2013, IEEE Transactions on Antennas and Propagation.

[9]  Raj Mittra,et al.  The study of FSS surfaces with varying surface impedance and lumped elements , 1989, Digest on Antennas and Propagation Society International Symposium.

[10]  Atef Z. Elsherbeni,et al.  Radiation Analysis Approaches for Refl ectarray Antennas , 2013 .

[11]  Laurent Dussopt,et al.  Wideband 400-Element Electronically Reconfigurable Transmitarray in X Band , 2013, IEEE Transactions on Antennas and Propagation.

[12]  N. Behdad,et al.  Wideband Planar Microwave Lenses Using Sub-Wavelength Spatial Phase Shifters , 2011, IEEE Transactions on Antennas and Propagation.

[13]  N. Behdad,et al.  Ultra-wideband, true-time-delay, metamaterial-based microwave lenses , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[14]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[15]  Fan Yang,et al.  High-Gain and Broadband Transmitarray Antenna Using Triple-Layer Spiral Dipole Elements , 2014, IEEE Antennas and Wireless Propagation Letters.

[16]  M. R. Chaharmir,et al.  A Wideband Transmitarray Using Dual-Resonant Double Square Rings , 2010, IEEE Transactions on Antennas and Propagation.

[17]  S. Hum,et al.  A Wideband Reconfigurable Transmitarray Element , 2012, IEEE Transactions on Antennas and Propagation.

[18]  Atef Z. Elsherbeni,et al.  Transmitarray Antenna Design Using Cross-Slot Elements With No Dielectric Substrate , 2014, IEEE Antennas and Wireless Propagation Letters.