Methods of Reflections: relations with Schwarz methods and classical stationary iterations, scalability and preconditioning.

The basic idea of the method of reflections appeared almost two hundred years ago; it is a method of successive approximations for the interaction of particles within a fluid, and it seems intuitively related to the Schwarz domain decomposition methods, the subdomains being the complements of the particle domains. We show in this paper that indeed there is a direct correspondence between the methods of reflections and Schwarz methods in the two particle/subdomain case. This allows us to give a new convergence analysis based on maximum principle techniques with precise convergence estimates that one could not obtain otherwise. We then show however also that in the case of more than two particles/subdomains, the methods of reflections and the Schwarz methods are really different methods, with different convergence properties. Using substructuring techniques from domain decomposition, we then show that the methods of reflections are classical block Jacobi and block Gauss-Seidel methods for the interface traces, and we derive new, relaxed versions of the methods of reflections with better convergence properties. We finally also introduce for the first time coarse corrections for the methods of reflections to make them scalable in the case when the number of particles becomes large. The substructured formulations permit the easy use of the methods of reflections as preconditioners for Krylov methods, and we illustrate scalability and preconditioning properties with numerical experiments.

[1]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[2]  J. C. Luke,et al.  Convergence of a multiple reflection method for calculation stokes flow in a suspension , 1989 .

[3]  Haibing Wang,et al.  ON DECOMPOSITION METHOD FOR ACOUSTIC WAVE SCATTERING BY MULTIPLE OBSTACLES , 2013 .

[4]  Simeon Reich,et al.  The optimal error bound for the method of simultaneous projections , 2017, J. Approx. Theory.

[5]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[6]  D. Young Iterative methods for solving partial difference equations of elliptic type , 1954 .

[7]  Catriona Dutreuilh,et al.  Introduction , 2019 .

[8]  Martin J. Gander,et al.  On the Scalability of Classical One-Level Domain-Decomposition Methods , 2018, Vietnam Journal of Mathematics.

[9]  Marian Smoluchowski Über die Wechselwirkung von Kugeln, die sich in einer zähen Flüssigkeit bewegen , 1927 .

[10]  J. Deny,et al.  Les espaces du type de Beppo Levi , 1954 .

[11]  Mikhael Balabane,et al.  Boundary Decomposition for Helmholtz and Maxwell equations 1: disjoint sub‐scatterers , 2004 .

[12]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[13]  Martin J. Gander,et al.  SHEM: An Optimal Coarse Space for RAS and Its Multiscale Approximation , 2017 .

[14]  Martin J. Gander,et al.  A New Coarse Grid Correction for RAS/AS , 2014 .

[15]  M. Gander,et al.  Analysis of a New Harmonically Enriched Multiscale Coarse Space for Domain Decomposition Methods , 2015, 1512.05285.

[16]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[17]  P. Martin,et al.  Multiple scattering and modified Green's functions , 2002 .

[18]  Sangtae Kim Chapter 1 – Microhydrodynamic Phenomena , 1991 .

[19]  Martin J. Gander,et al.  Analysis of the parallel Schwarz method for growing chains of fixed-sized subdomains: Part III , 2018 .

[20]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[21]  Vivette Girault,et al.  DIRICHLET AND NEUMANN EXTERIOR PROBLEMS FOR THE n-DIMENSIONAL LAPLACE OPERATOR AN APPROACH IN WEIGHTED SOBOLEV SPACES , 1997 .

[22]  J. Hengstenberg,et al.  Messen und Regeln in der chemischen Technik , 1957 .

[23]  R. Hiptmair,et al.  Boundary Element Methods , 2021, Oberwolfach Reports.

[24]  Martin J. Gander,et al.  Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-Sized Subdomains: Part I , 2017, SIAM J. Numer. Anal..

[25]  Martin J. Gander,et al.  Schwarz Methods over the Course of Time , 2008 .

[26]  M. Gander,et al.  Why Restricted Additive Schwarz Converges Faster than Additive Schwarz , 2003 .

[27]  S. D. Traytak Convergence of a reflection method for diffusion-controlled reactions on static sinks , 2006 .

[28]  Jan K. G. Dhont,et al.  An introduction to dynamics of colloids , 1996 .

[29]  Julien Salomon,et al.  On the method of reflections , 2017, Numerische Mathematik.

[30]  J. Velázquez,et al.  The Method of Reflections, Homogenization and Screening for Poisson and Stokes Equations in Perforated Domains , 2016, 1603.06750.

[31]  Martin J. Gander,et al.  Analysis of the Parallel Schwarz Method for Growing Chains of Fixed-Sized Subdomains: Part I , 2017, SIAM J. Numer. Anal..

[32]  Sangtae Kim,et al.  Microhydrodynamics: Principles and Selected Applications , 1991 .

[33]  Richard M. Höfer Sedimentation of Inertialess Particles in Stokes Flows , 2016 .

[34]  John F. Brady,et al.  Many-body effects and matrix inversion in low-Reynolds-number hydrodynamics , 2001 .

[35]  Martin J. Gander,et al.  Review of the Methods of Reflections , 2017 .

[36]  Benjamin Stamm,et al.  Domain decomposition for implicit solvation models. , 2013, The Journal of chemical physics.

[37]  Robert Murphy Elementary principles of the theories of electricity, heat, and molecular actions : designed for the use of students in the University , 1833 .

[38]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[39]  P. Martin,et al.  Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles , 2006 .

[40]  Felix Otto,et al.  Identification of the Dilute Regime in Particle Sedimentation , 2004 .

[41]  R. Kanwal Linear Integral Equations , 1925, Nature.

[42]  Martin J. Gander,et al.  Discontinuous Coarse Spaces for DD-Methods with Discontinuous Iterates , 2014 .

[43]  B. Hanouzet Espaces de Sobolev avec poids. Application au problème de Dirichlet dans un demi espace , 1971 .

[44]  Stuart C. Hawkins,et al.  A high-order algorithm for multiple electromagnetic scattering in three dimensions , 2009, Numerical Algorithms.

[45]  G. J. Kynch The slow motion of two or more spheres through a viscous fluid , 1959, Journal of Fluid Mechanics.

[46]  J. Burgers Hydrodynamics. — On the influence of the concentration of a suspension upon the sedimentation velocity (in particular for a suspension of spherical particles) , 1995 .

[47]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .