Heuristic Scheduling of Parallel Heterogeneous Queues with Set-Ups

We consider the problem of allocating a single server to a system of queues with Poisson arrivals. Each queue represents a class of jobs and possesses a holding cost rate, general service distribution, and general set-up time distribution. The objective is to minimize the expected holding cost due to the waiting of jobs. A set-up time is required to switch from one queue to another. We provide a limited characterization of the optimal policy and a simple heuristic scheduling policy for this problem. Simulation results demonstrate the effectiveness of our heuristic over a wide range of problem instances.

[1]  Moshe Sidi,et al.  Dominance relations in polling systems , 1990, Queueing Syst. Theory Appl..

[2]  Armand M. Makowski,et al.  K competing queues with geometric service requirements and linear costs: The μc-rule is always optimal☆ , 1985 .

[3]  Kevin Mahon,et al.  Deterministic and Stochastic Scheduling , 1983 .

[4]  U. Yechiali,et al.  Dynamic priority rules for cyclic-type queues , 1989, Advances in Applied Probability.

[5]  Wojciech Szpankowski,et al.  Stability of token passing rings , 1992, Queueing Syst. Theory Appl..

[6]  Moshe Sidi,et al.  Polling systems: applications, modeling, and optimization , 1990, IEEE Trans. Commun..

[7]  P. Nain,et al.  Interchange arguments for classical scheduling problems in queues , 1989 .

[8]  J. Michael Harrison,et al.  Dynamic Scheduling of a Multiclass Queue: Discount Optimality , 1975, Oper. Res..

[9]  Mandyam M. Srinivasan,et al.  Nondeterministic polling systems , 1991 .

[10]  J. Ben Atkinson,et al.  An Introduction to Queueing Networks , 1988 .

[11]  Lawrence M. Wein,et al.  A broader view of the job-shop scheduling problem , 1992 .

[12]  D. Teneketzis,et al.  Optimality of index policies for stochastic scheduling with switching penalties , 1992, Journal of Applied Probability.

[13]  Zhen Liu,et al.  Stability, monotonicity and invariant quantities in general polling systems , 1992, Queueing Syst. Theory Appl..

[14]  G. Klimov Time-Sharing Service Systems. I , 1975 .

[15]  D. Teneketzis,et al.  Optimal stochastic scheduling of forest networks with switching penalties , 1994, Advances in Applied Probability.

[16]  Izhak Rubin,et al.  Polling with a General-Service Order Table , 1987, IEEE Trans. Commun..

[17]  J. Walrand,et al.  The cμ rule revisited , 1985, Advances in Applied Probability.

[18]  Michael J. Magazine,et al.  Batching in single operation manufacturing systems , 1985 .

[19]  T. Lai,et al.  Open bandit processes and optimal scheduling of queueing networks , 1988, Advances in Applied Probability.

[20]  Van Oyen,et al.  Optimal stochastic scheduling of queueing networks: Switching costs and partial information. , 1992 .

[21]  P. J. Kuehn,et al.  Multiqueue systems with nonexhaustive cyclic service , 1979, The Bell System Technical Journal.

[22]  A. Federgruen,et al.  The stochastic Economic Lot Scheduling Problem: cyclical base-stock policies with idle times , 1996 .

[23]  William L. Maxwell,et al.  Theory of scheduling , 1967 .

[24]  J. Bather,et al.  Multi‐Armed Bandit Allocation Indices , 1990 .

[25]  Christian M. Ernst,et al.  Multi-armed Bandit Allocation Indices , 1989 .

[26]  Guy Pujolle,et al.  Introduction to queueing networks , 1987 .

[27]  Hideaki Takagi,et al.  Priority Queues with Setup Times , 1990, Oper. Res..

[28]  Micha Hofri,et al.  On the Optimal Control of Two Queues with Server Setup Times and its Analysis , 1987, SIAM J. Comput..

[29]  Donald F. Towsley,et al.  On optimal polling policies , 1992, Queueing Syst. Theory Appl..

[30]  Jean Walrand,et al.  The c# rule revisited , 1985 .

[31]  J. Walrand,et al.  Interchange arguments in stochastic scheduling , 1989 .

[32]  J. Michael Harrison,et al.  A Priority Queue with Discounted Linear Costs , 1975, Oper. Res..

[33]  Colin E. Bell,et al.  Characterization and Computation of Optimal Policies for Operating an M/G/1 Queuing System with Removable Server , 1971, Oper. Res..