IBM Research Report Partition Inequalities : Separation , Extensions and Network Design

Given a graphG = (V,E) with nonnegative weights x(e) for each edge e, a partition inequality is of the formx (

[1]  W. Marsden I and J , 2012 .

[2]  Ali Ridha Mahjoub,et al.  Max Flow and Min Cut with bounded-length paths: complexity, algorithms, and approximation , 2010, Math. Program..

[3]  Vladimir Kolmogorov,et al.  A Faster Algorithm for Computing the Principal Sequence of Partitions of a Graph , 2010, Algorithmica.

[4]  Francisco Barahona,et al.  A linear programming approach to increasing the weight of all minimum spanning trees , 2008, Networks.

[5]  Ali Ridha Mahjoub,et al.  On the Polytope of the (1, 2)-Survivable Network Design Problem , 2008, SIAM J. Discret. Math..

[6]  Ali Rhida Mahjoub,et al.  On the Steiner 2-edge connected subgraph polytope , 2008, RAIRO Oper. Res..

[7]  Myriam Preissmann,et al.  Graphic Submodular Function Minimization: A Graphic Approach and Applications , 2008, Bonn Workshop of Combinatorial Optimization.

[8]  Ali Ridha Mahjoub,et al.  The two‐edge connected hop‐constrained network design problem: Valid inequalities and branch‐and‐cut , 2007, Networks.

[9]  Geir Dahl,et al.  On the k edge-disjoint 2-hop-constrained paths polytope , 2006, Oper. Res. Lett..

[10]  Panos M. Pardalos,et al.  Design of survivable networks , 2006 .

[11]  Ali Ridha Mahjoub,et al.  Two-edge connected subgraphs with bounded rings: Polyhedral results and Branch-and-Cut , 2006, Math. Program..

[12]  Francisco Barahona,et al.  Network reinforcement , 2006, Math. Program..

[13]  Ali Ridha Mahjoub,et al.  On survivable network polyhedra , 2005, Discret. Math..

[14]  Michael Jünger,et al.  New primal and dual matching heuristics , 1995, Algorithmica.

[15]  Ali Ridha Mahjoub,et al.  Two Edge-Disjoint Hop-Constrained Paths and Polyhedra , 2005, SIAM J. Discret. Math..

[16]  Francisco Barahona,et al.  Separation of partition inequalities with terminals , 2004, Discret. Optim..

[17]  Geir Dahl,et al.  On the directed hop-constrained shortest path problem , 2004, Oper. Res. Lett..

[18]  Ali Ridha Mahjoub,et al.  (1, 2)-Survivable Networks: Facets and Branch-and-Cut , 2004, The Sharpest Cut.

[19]  R. Ravi,et al.  Discrete Optimization Approximating k-cuts using network strength as a Lagrangean relaxation , 2004 .

[20]  Ali Ridha Mahjoub,et al.  Separation of partition inequalities for the (1, 2)-survivable network design problem , 2002, Oper. Res. Lett..

[21]  Martine Labbé,et al.  Polyhedral results for two-connected networks with bounded rings , 2002, Math. Program..

[22]  J. A. d'Auriac,et al.  Optimal cooperation and submodularity for computing Potts' partition functions with a large number of states , 2002, cond-mat/0204055.

[23]  Mourad Baïou,et al.  On the dominant of the Steiner 2-edge connected subgraph polytope , 2001, Discret. Appl. Math..

[24]  F. Iglói,et al.  Excess entropy and central charge of the two-dimensional random-bond Potts model in the large-Q limit , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[26]  Sachin B. Patkar,et al.  Fast On-Line/Off-Line Algorithms for Optimal Reinforcement of a Network and its Connections with Principal Partition , 2000, J. Comb. Optim..

[27]  Francesco Maffioli,et al.  Solving the Two-Connected Network with Bounded Meshes Problem , 2000, Oper. Res..

[28]  Ali Ridha Mahjoub,et al.  Separation of Partition Inequalities , 2000, Math. Oper. Res..

[29]  Francisco Barahona,et al.  On the k-cut problem , 2000, Oper. Res. Lett..

[30]  Ali Ridha Mahjoub,et al.  Steiner k-Edge Connected Subgraph Polyhedra , 2000, J. Comb. Optim..

[31]  Bernard Fortz,et al.  Design of Survivable Networks with Bounded Rings , 2000, Network Theory and Applications.

[32]  Hervé Kerivin,et al.  Reseaux fiables et polyedres , 2000 .

[33]  Geir Dahl,et al.  Notes on polyhedra associated with hop-constrained paths , 1999, Oper. Res. Lett..

[34]  Ali Ridha Mahjoub,et al.  On the Linear Relaxation of the 2-node Connected Subgraph Polytope , 1999, Discret. Appl. Math..

[35]  Jean Fonlupt,et al.  Critical extreme points of the 2-edge connected spanning subgraph polytope , 1999, Math. Program..

[36]  Harold N. Gabow,et al.  Packing algorithms for arborescences (and spanning trees) in capacitated graphs , 1995, Math. Program..

[37]  Mohamed Didi Biha Graphes k-arête connexes et polyèdres , 1998 .

[38]  Mourad Baïou,et al.  Steiner 2-Edge Connected Subgraph Polytopes on Series-Parallel Graphs , 1997, SIAM J. Discret. Math..

[39]  Mechthild Stoer,et al.  A simple min-cut algorithm , 1997, JACM.

[40]  I. Stancu-Minasian Nonlinear Fractional Programming , 1997 .

[41]  Mohamed Didi Biha,et al.  K-edge Connected Polyhedra on Series-parallel Graphs , 1996, Oper. Res. Lett..

[42]  Roberto Solis-Oba,et al.  Increasing the weight of minimum spanning trees , 1996, SODA '96.

[43]  Ali Ridha Mahjoub,et al.  On two-connected subgraph polytopes , 1995, Discret. Math..

[44]  Francisco Barahona,et al.  Packing Spanning Trees , 1995, Math. Oper. Res..

[45]  Maurice Queyranne,et al.  A combinatorial algorithm for minimizing symmetric submodular functions , 1995, SODA '95.

[46]  Harold N. Gabow,et al.  Algorithms for graphic polymatroids and parametric s-Sets , 1995, SODA '95.

[47]  James B. Orlin,et al.  A Faster Algorithm for Finding the Minimum Cut in a Directed Graph , 1994, J. Algorithms.

[48]  Robert E. Tarjan,et al.  Improved Algorithms for Bipartite Network Flow , 1994, SIAM J. Comput..

[49]  Sachin B. Patkar,et al.  Approximation Algorithms for Min-k-Overlap Problems Using the Principal Lattice of Partitions Approach , 1994, J. Algorithms.

[50]  Sunil Chopra,et al.  The k-Edge-Connected Spanning Subgraph Polyhedron , 1994, SIAM J. Discret. Math..

[51]  Ali Ridha Mahjoub,et al.  Two-edge connected spanning subgraphs and polyhedra , 1994, Math. Program..

[52]  Eddie Cheng,et al.  A Faster Algorithm for Computing the Strength of a Network , 1994, Inf. Process. Lett..

[53]  Sachin B. Patkar,et al.  Principal Lattice of Partition of submodular functions on Graphs: Fast algorithms for Principal Partition and Generic Rigidity , 1992, ISAAC.

[54]  S. Fujishige,et al.  New algorithms for the intersection problem of submodular systems , 1992 .

[55]  Francisco Barahona,et al.  Separating from the dominant of the spanning tree polytope , 1992, Oper. Res. Lett..

[56]  Mechthild Stoer,et al.  Facets for Polyhedra Arising in the Design of Communication Networks with Low-Connectivity Constraints , 1992, SIAM J. Optim..

[57]  Martin Grötschel,et al.  Computational Results with a Cutting Plane Algorithm for Designing Communication Networks with Low-Connectivity Constraints , 1992, Oper. Res..

[58]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[59]  Dan Gusfield,et al.  Computing the Strength of a Graph , 1991, SIAM J. Comput..

[60]  H. Narayanan,et al.  The principal lattice of partitions of a submodular function , 1991 .

[61]  Martin Grötschel,et al.  Integer Polyhedra Arising from Certain Network Design Problems with Connectivity Constraints , 1990, SIAM J. Discret. Math..

[62]  Robert E. Tarjan,et al.  A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..

[63]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[64]  Andrew V. Goldberg,et al.  A new approach to the maximum flow problem , 1986, STOC '86.

[65]  Robert E. Tarjan,et al.  A Note on Finding Minimum-Cost Edge-Disjoint Spanning Trees , 1985, Math. Oper. Res..

[66]  Gérard Cornuéjols,et al.  The traveling salesman problem on a graph and some related integer polyhedra , 1985, Math. Program..

[67]  William H. Cunningham,et al.  Optimal attack and reinforcement of a network , 1985, JACM.

[68]  Dan Gusfield,et al.  Connectivity and Edge-Disjoint Spanning Trees , 1983, Information Processing Letters.

[69]  H. Imai NETWORK-FLOW ALGORITHMS FOR LOWER-TRUNCATED TRANSVERSAL POLYMATROIDS , 1983 .

[70]  F. Y. Wu The Potts model , 1982 .

[71]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[72]  M. Iri,et al.  Use of matroid theory in operations research, circuits and systems theory , 1981 .

[73]  J. Edmonds,et al.  A Min-Max Relation for Submodular Functions on Graphs , 1977 .

[74]  W. T. Tutte On the Problem of Decomposing a Graph into n Connected Factors , 1961 .

[75]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[76]  K. Menger Zur allgemeinen Kurventheorie , 1927 .