Fully Dynamic and Kinematic Voronoi Diagrams in GIS

This paper gives a survey of static, dynamic, and kinematic Voronoi diagrams as a basic tool for Geographic Information Systems (GIS). We show how the Voronoi diagram with its dual, the Delaunay multigraph, can be used to maintain the topology of the map objects of a GIS. The presented method allows the insertion, deletion, and translation of points and line segments in a Voronoi diagram of n gcncrators. All clcmcntary operations are available in O(log n) expected time using expected linear storage. The Voronoi approach also greatly simplifies some of the basic traditional GIS queries and allows even new types of higher level queries. The concept of a persistent, locally-modifiable spatial data structure that is always complete provides an important new approach to spatial data handling that is not available with existing systems.

[1]  Thomas R,et al.  Voronoi Diagrams of Line Segments Made Easy * ( Extended , 1999 .

[2]  Leonidas J. Guibas,et al.  Voronoi Diagrams of Moving Points , 1998, Int. J. Comput. Geom. Appl..

[3]  Weiping Yang MANAGING SPATIAL OBJECTS WITH THE VMO-TREE , 1996 .

[4]  C. Gold,et al.  A spatial data structure integrating GIS and simulation in a marine environment , 1995 .

[5]  Christopher M. Gold,et al.  Surface Modelling with Guaranteed Consistency - An Object-Based Approach , 1994, IGIS.

[6]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[7]  Olivier Devillers,et al.  Dog Bites Postman: Point Location in the Moving Voronoi Diagram and Related Problems , 1993, Int. J. Comput. Geom. Appl..

[8]  L. Paul Chew,et al.  Near-quadratic Bounds for the L1Voronoi Diagram of Moving Points , 1993, Comput. Geom..

[9]  Mariette Yvinec,et al.  Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..

[10]  Andrew U. Frank,et al.  Theories and Methods of Spatio-Temporal Reasoning in Geographic Space , 1992, Lecture Notes in Computer Science.

[11]  Denis White,et al.  LESSONS FOR THE DESIGN OF POLYGON OVERLAY PROCESSING FROM THE ODYSSEY WHIRLPOOL ALGORITHM , 1992 .

[12]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[13]  C. Gold Problems with handling spatial data ― the Voronoi approach , 1991 .

[14]  Richard C. T. Lee,et al.  Voronoi diagrams of moving points in the plane , 1990, Int. J. Comput. Geom. Appl..

[15]  Christopher M. Gold,et al.  Spatial Data Structures — The Extension from One to Two Dimensions , 1990 .

[16]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[17]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[18]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[19]  I. G. Gowda,et al.  Dynamic Voronoi diagrams , 1983, IEEE Trans. Inf. Theory.

[20]  D. T. Lee,et al.  Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..

[21]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[22]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[23]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .