Fully Dynamic and Kinematic Voronoi Diagrams in GIS
暂无分享,去创建一个
[1] Thomas R,et al. Voronoi Diagrams of Line Segments Made Easy * ( Extended , 1999 .
[2] Leonidas J. Guibas,et al. Voronoi Diagrams of Moving Points , 1998, Int. J. Comput. Geom. Appl..
[3] Weiping Yang. MANAGING SPATIAL OBJECTS WITH THE VMO-TREE , 1996 .
[4] C. Gold,et al. A spatial data structure integrating GIS and simulation in a marine environment , 1995 .
[5] Christopher M. Gold,et al. Surface Modelling with Guaranteed Consistency - An Object-Based Approach , 1994, IGIS.
[6] Ketan Mulmuley,et al. Computational geometry - an introduction through randomized algorithms , 1993 .
[7] Olivier Devillers,et al. Dog Bites Postman: Point Location in the Moving Voronoi Diagram and Related Problems , 1993, Int. J. Comput. Geom. Appl..
[8] L. Paul Chew,et al. Near-quadratic Bounds for the L1Voronoi Diagram of Moving Points , 1993, Comput. Geom..
[9] Mariette Yvinec,et al. Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..
[10] Andrew U. Frank,et al. Theories and Methods of Spatio-Temporal Reasoning in Geographic Space , 1992, Lecture Notes in Computer Science.
[11] Denis White,et al. LESSONS FOR THE DESIGN OF POLYGON OVERLAY PROCESSING FROM THE ODYSSEY WHIRLPOOL ALGORITHM , 1992 .
[12] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[13] C. Gold. Problems with handling spatial data ― the Voronoi approach , 1991 .
[14] Richard C. T. Lee,et al. Voronoi diagrams of moving points in the plane , 1990, Int. J. Comput. Geom. Appl..
[15] Christopher M. Gold,et al. Spatial Data Structures — The Extension from One to Two Dimensions , 1990 .
[16] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[17] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[18] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[19] I. G. Gowda,et al. Dynamic Voronoi diagrams , 1983, IEEE Trans. Inf. Theory.
[20] D. T. Lee,et al. Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..
[21] Robin Sibson,et al. Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..
[22] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[23] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .