Instantons and 2d superconformal field theory
暂无分享,去创建一个
[1] G. Bonelli,et al. Instantons on ALE spaces and super Liouville conformal field theories , 2011, 1106.2505.
[2] V. Belavin,et al. Super Liouville conformal blocks from $ \mathcal{N} = 2 $ SU(2) quiver gauge theories , 2011 .
[3] B.Feigin,et al. Super Liouville conformal blocks from N=2 SU(2) quiver gauge theories , 2011, 1105.5800.
[4] A. Belavin,et al. AGT conjecture and integrable structure of conformal field theory for c=1 , 2011, 1102.0343.
[5] Vasyl Alba,et al. On Combinatorial Expansion of the Conformal Blocks Arising from AGT Conjecture , 2010, 1012.1312.
[6] M. Taki. On AGT conjecture for pure super Yang-Mills and W-algebra , 2009, 0912.4789.
[7] B. Feigin,et al. Equivariant K-theory of Hilbert schemes via shuffle algebra , 2009, 0904.1679.
[8] L. Alday,et al. Central charges of Liouville and Toda theories from M5-branes. , 2010, Physical review letters.
[9] L. Alday,et al. Affine SL(2) Conformal Blocks from 4d Gauge Theories , 2010, Letters in Mathematical Physics.
[10] A. Mironov,et al. On AGT relation in the case of U(3) , 2009, 0908.2569.
[11] L. Alday,et al. Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.
[12] D. Gaiotto. Asymptotically free = 2 theories and irregular conformal blocks , 2009, 0908.0307.
[13] N. Wyllard. A(N-1) conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories , 2009, 0907.2189.
[14] L. Hadasz,et al. Elliptic recurrence representation of the N=1 Neveu–Schwarz blocks , 2007, 0711.1619.
[15] V. Belavin. On the N=1 super Liouville four-point functions , 2007, 0705.1983.
[16] V. Belavin,et al. Bootstrap in Supersymmetric Liouville Field Theory , 2008 .
[17] A. Neveu,et al. Bootstrap in supersymmetric Liouville field theory. I. NS sector , 2007 .
[18] A. Belavin,et al. Bootstrap in Supersymmetric Liouville Field Theory. I. NS Sector , 2007, hep-th/0703084.
[19] V. Belavin. N=1 supersymmetric conformal block recursion relations , 2006, hep-th/0611295.
[20] L. Hadasz,et al. Recursion representation of the Neveu-Schwarz superconformal block , 2006, hep-th/0611266.
[21] A. Buras,et al. Charm-Quark Contribution to K L → μ + μ − at Next-to-Next-to-Leading Order , 2006 .
[22] J. F. Morales,et al. Multi instanton calculus on ALE spaces , 2004, hep-th/0406243.
[23] Kota Yoshioka,et al. Instanton counting on blowup, I , 2003 .
[24] Kota Yoshioka,et al. Instanton counting on blowup. I. 4-dimensional pure gauge theory , 2003, math/0306198.
[25] U. Bruzzo,et al. Multi-instanton calculus and equivariant cohomology , 2002, hep-th/0211108.
[26] R. Flume,et al. AN ALGORITHM FOR THE MICROSCOPIC EVALUATION OF THE COEFFICIENTS OF THE SEIBERG–WITTEN PREPOTENTIAL , 2002, hep-th/0208176.
[27] N. Nekrasov. Seiberg-Witten prepotential from instanton counting , 2002, hep-th/0306211.
[28] V. Khoze,et al. The Calculus of many instantons , 2002, hep-th/0206063.
[29] A. Kuznetsov. Quiver varieties and Hilbert schemes , 2001, math/0111092.
[30] E. Vasserot,et al. On the K-theory of the cyclic quiver variety , 1999, math/9902091.
[31] R. Poghossian. Structure constants in the N = 1 super-Liouville field theory , 1997 .
[32] R. Rashkov,et al. Three-point correlation functions in N = 1 super Liouville theory , 1996 .
[33] R.C.Rashkov,et al. Three-point correlation functions in N=1 Super Lioville Theory , 1996, hep-th/9602148.
[34] Alexander M. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory , 1996 .
[35] H. Nakajima. Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , 1994 .
[36] V. Fateev,et al. Parafermionic Currents in the Two-Dimensional Conformal Quantum Field Theory and Selfdual Critical Points in Z(n) Invariant Statistical Systems , 1985 .
[37] A. Polyakov. Quantum Geometry of Fermionic Strings , 1981 .
[38] V. Drinfeld,et al. A description of instantons , 1978 .
[39] M. Atiyah,et al. Construction of Instantons , 1978 .
[40] V. Zakharov,et al. Yang-Mills equations as inverse scattering problem , 1978 .
[41] R. S. Ward,et al. Instantons and algebraic geometry , 1977 .
[42] A. Polyakov,et al. Pseudoparticle Solutions of the Yang-Mills Equations , 1975 .
[43] A. Belavin,et al. AGT conjecture and integrable structure of conformal field theory for c=1 , 2011, 1102.0343.
[44] M. Taki. On AGT conjecture for pure super Yang-Mills and W-algebra , 2009, 0912.4789.
[45] L. Alday,et al. Affine SL(2) Conformal Blocks from 4d Gauge Theories , 2010, Letters in Mathematical Physics.
[46] A. Mironov,et al. On AGT relation in the case of U(3) , 2009, 0908.2569.
[47] L. Alday,et al. Liouville Correlation Functions from Four-Dimensional Gauge Theories , 2009, 0906.3219.
[48] L. Hadasz,et al. Elliptic recurrence representation of the N=1 Neveu–Schwarz blocks , 2007, 0711.1619.
[49] V. Belavin. On the N=1 super Liouville four-point functions , 2007, 0705.1983.
[50] V. Belavin,et al. Bootstrap in Supersymmetric Liouville Field Theory , 2008 .
[51] A. Belavin,et al. Bootstrap in Supersymmetric Liouville Field Theory. I. NS Sector , 2007, hep-th/0703084.
[52] L. Hadasz,et al. Recursion representation of the Neveu-Schwarz superconformal block , 2006, hep-th/0611266.
[53] J. F. Morales,et al. Multi instanton calculus on ALE spaces , 2004, hep-th/0406243.
[54] Kota Yoshioka,et al. Instanton counting on blowup. I. 4-dimensional pure gauge theory , 2003, math/0306198.
[55] U. Bruzzo,et al. Multi-instanton calculus and equivariant cohomology , 2002, hep-th/0211108.
[56] R. Flume,et al. AN ALGORITHM FOR THE MICROSCOPIC EVALUATION OF THE COEFFICIENTS OF THE SEIBERG–WITTEN PREPOTENTIAL , 2002, hep-th/0208176.
[57] V. Khoze,et al. The Calculus of many instantons , 2002, hep-th/0206063.
[58] E. Vasserot,et al. On the K-theory of the cyclic quiver variety , 1999, math/9902091.
[59] R. Poghossian. Structure constants in the N = 1 super-Liouville field theory , 1997 .
[60] R.C.Rashkov,et al. Three-point correlation functions in N=1 Super Lioville Theory , 1996, hep-th/9602148.
[61] V. Fateev,et al. Parafermionic Currents in the Two-Dimensional Conformal Quantum Field Theory and Selfdual Critical Points in Z(n) Invariant Statistical Systems , 1985 .
[62] A. Polyakov,et al. Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory - Nucl. Phys. B241, 333 (1984) , 1984 .
[63] V. Zakharov,et al. Yang-Mills equations as inverse scattering problem , 1978 .
[64] A. Polyakov,et al. Pseudoparticle Solutions of the Yang-Mills Equations , 1975 .