Synthesis of 2D materials in arc plasmas

In this article we review recent efforts focused on synthesis of two-dimensional (2D) materials in an arc-plasma based process with particular focus on graphene. We present state-of-the-art experimental data on various attempts to employ the arc plasma technique for the graphene synthesis and consider growth mechanisms including precipitation, surface-catalyzed processes and a substrate-independent approach. The potential of arc synthesis for the growth of other types of 2D materials and future prospects are discussed.

[1]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[2]  Michael Keidar,et al.  Role of substrate temperature at graphene synthesis in an arc discharge , 2015 .

[3]  S. Banerjee,et al.  Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric , 2009, 0901.2901.

[4]  M. Segal Selling graphene by the ton. , 2009, Nature nanotechnology.

[5]  Michael Keidar,et al.  Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge , 2008 .

[6]  J. Qi,et al.  Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition , 2011 .

[7]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[8]  Michael Keidar,et al.  Modeling of atmospheric-pressure anodic carbon arc producing carbon nanotubes , 2009 .

[9]  Michael Keidar,et al.  Paper-based ultracapacitors with carbon nanotubes-graphene composites , 2014 .

[10]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[11]  M. Keidar,et al.  Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene , 2012 .

[12]  M. Keidar,et al.  Numerical simulation of carbon arc discharge for nanoparticle synthesis , 2012 .

[13]  Morphology of graphene thin film growth on SiC(0001) , 2007, 0710.0877.

[14]  Michael Frenklach,et al.  Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors , 2010 .

[15]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[16]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[17]  Remi Dussart,et al.  Plasma cryogenic etching of silicon: from the early days to today's advanced technologies , 2014 .

[18]  M. Meyyappan,et al.  Functionalization of Carbon Nanotubes Using Atomic Hydrogen from a Glow Discharge , 2002 .

[19]  G. Amaratunga,et al.  Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear , 2000, Nature.

[20]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[21]  I. Alexandrou,et al.  Synthesis of carbon 'onions' in water , 2001, Nature.

[22]  M. Keidar,et al.  A model of carbon nanotube synthesis in arc discharge plasmas , 2012 .

[23]  M. Keidar,et al.  Graphene and Carbon Nanotubes From Arc Plasmas: Experiment and Plasma Modeling , 2011, IEEE Transactions on Plasma Science.

[24]  Michael Keidar,et al.  Low-temperature plasmas in carbon nanostructure synthesis , 2013 .

[25]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[26]  John Robertson,et al.  Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition , 2001 .

[27]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[28]  Stephen J. Pearton,et al.  Review of radiation damage in GaN-based materials and devices , 2013 .

[29]  V. Radmilović,et al.  Substrate-free gas-phase synthesis of graphene sheets. , 2008, Nano letters.

[30]  Zhennan Gu,et al.  Low-cost and large-scale synthesis of graphene nanosheets by arc discharge in air , 2010, Nanotechnology.

[31]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[32]  Jiwoong Park,et al.  Transfer-free batch fabrication of single layer graphene transistors. , 2009, Nano letters.

[33]  W. S. Rees Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, 2nd Edition: Edited by Rointan F. Bunshah, Noyes, Park Ridge, NJ, 1994, XXVI, 861 pp., hardcover, $ 98.00, ISBN 0–81 55–13372 , 1995 .

[34]  H. Tamon,et al.  Influence of arc duration time on the synthesis of carbon nanohorns by a gas-injected arc-in-water system: application to polymer electrolyte fuel cell electrodes , 2011 .

[35]  N. Mohanty,et al.  Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. , 2008, Nano letters.

[36]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[37]  Tomo-o Terasawa,et al.  Growth of graphene on Cu by plasma enhanced chemical vapor deposition , 2012 .

[38]  Ado Jorio,et al.  Raman Spectroscopy in Graphene Related Systems , 2011 .

[39]  Matthew E. Berck,et al.  Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure , 2011 .

[40]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[41]  E. Williams,et al.  Printed Graphene Circuits , 2007, 0809.1634.

[42]  Alan M. Cassell,et al.  Carbon nanotube growth by PECVD: a review , 2003 .

[43]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[44]  K. Jenkins,et al.  Operation of graphene transistors at gigahertz frequencies. , 2008, Nano letters.

[45]  A. Obraztsov,et al.  Chemical vapour deposition: Making graphene on a large scale. , 2009, Nature nanotechnology.

[46]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[47]  M. Abrashev,et al.  Microwave plasmas applied for the synthesis of free standing graphene sheets , 2014 .

[48]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[49]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[50]  R. Car,et al.  Oxygen-driven unzipping of graphitic materials. , 2006, Physical review letters.

[51]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[52]  R. Ruoff,et al.  Chemical methods for the production of graphenes. , 2009, Nature nanotechnology.

[53]  Jian Li,et al.  Correlation Between Formation of the Plasma Jet and Synthesis of Graphene in Arc Discharge , 2011, IEEE Transactions on Plasma Science.

[54]  P. Bernier,et al.  Nano-mechanical cutting and opening of single wall carbon nanotubes , 2000 .

[55]  Philip J. Martin,et al.  Handbook of vacuum arc science and technology : fundamentals and applications , 1995 .

[56]  J. Flege,et al.  Epitaxial graphene on ruthenium. , 2008, Nature materials.

[57]  E. Pop,et al.  Effects of polycrystalline cu substrate on graphene growth by chemical vapor deposition. , 2011, Nano letters.

[58]  M. Keidar,et al.  Emission spectra analysis of arc plasma for synthesis of carbon nanostructures in various magnetic conditions , 2012 .

[59]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[60]  Michael Keidar,et al.  Arc plasma synthesis of carbon nanostructures: where is the frontier? , 2011 .

[61]  E. Rut’kov,et al.  A study of the carbon adlayer on iridium , 1985 .

[62]  C. Rao,et al.  Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method , 2009 .

[63]  K. Novoselov,et al.  Raman spectroscopy of graphene edges. , 2008, Nano letters.

[64]  Roberto Car,et al.  Functionalized single graphene sheets derived from splitting graphite oxide. , 2006, The journal of physical chemistry. B.

[65]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[66]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[67]  M. Meyyappan,et al.  Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids , 2013, 1306.6711.

[68]  C. D. Scott,et al.  Review of the arc process modeling for fullerene and nanotube production. , 2006, Journal of nanoscience and nanotechnology.

[69]  M. Chhowalla,et al.  A review of chemical vapour deposition of graphene on copper , 2011 .

[70]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Keidar,et al.  Mechanism of carbon nanostructure synthesis in arc plasma , 2010 .

[72]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[73]  Meyya Meyyappan,et al.  Carbon Nanotubes: Science and Applications , 2007 .

[74]  M. Dresselhaus Carbon nanotubes , 1995 .

[75]  I Levchenko,et al.  Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas. , 2010, Nanoscale.

[76]  R. Service Materials science. Carbon sheets an atom thick give rise to graphene dreams. , 2009, Science.

[77]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.