Field-Free Deterministic Magnetization Switching Induced by Interlaced Spin-Orbit Torques.

Spin-orbit torque (SOT) based magnetic random access memory (MRAM) is envisioned as an emerging non-volatile memory due to its ultra-high speed and low power consumption. The field-free switching schema in SOT devices is of great interest to both academia and industry. Here we propose a novel field-free deterministic magnetization switching in a regular magnetic tunnel junction (MTJ) by using two currents sequentially passing interlaced paths, with less requirements of manufacturing process or additional physical effects. The switching is bipolar since the final magnetization state depends on the combination of current paths. The functionality and robustness of the proposed schema is validated through both macrospin and micromagnetic simulation. The influences of field-like torque and Dzyaloshinskii-Moriya interaction (DMI) effect are further researched. Our proposed schema shows good scalability and is expected to realize novel digital logic and even computing-in-memory platform.

[1]  H. Ohno,et al.  Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.

[2]  Kang L. Wang,et al.  Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. , 2013, Nature nanotechnology.

[3]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[4]  D. Ralph,et al.  Spin transfer torque devices utilizing the giant spin Hall effect of tungsten , 2012, 1208.1711.

[5]  Bernard Dieny,et al.  Magnetoresistive Random Access Memory , 2016, Proceedings of the IEEE.

[6]  Wei Liu,et al.  Asymmetric current-driven switching of synthetic antiferromagnets with Pt insert layers. , 2018, Nanoscale.

[7]  Jiamian Hu,et al.  Field-free spin–orbit torque perpendicular magnetization switching in ultrathin nanostructures , 2020, npj Computational Materials.

[8]  H. F. Liu,et al.  Spin-orbit torque switching in perpendicular Y3Fe5O12/Pt bilayer , 2019, Applied Physics Letters.

[9]  Pu Huang,et al.  Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. , 2020, Nanoscale.

[10]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[11]  W. Goes,et al.  Two-pulse magnetic field-free switching scheme for perpendicular SOT-MRAM with a symmetric square free layer , 2020 .

[12]  Jun Liu,et al.  Correlation between the spin Hall angle and the structural phases of early 5d transition metals , 2015, 1512.03529.

[13]  Robert M. White,et al.  Two-terminal spin–orbit torque magnetoresistive random access memory , 2018, Nature Electronics.

[14]  L. Buda-Prejbeanu,et al.  Fast current-induced domain-wall motion controlled by the Rashba effect. , 2011, Nature materials.

[15]  Jong-Ryul Jeong,et al.  Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. , 2016, Nature nanotechnology.

[16]  Xiufeng Han,et al.  Field‐Free Programmable Spin Logics via Chirality‐Reversible Spin–Orbit Torque Switching , 2018, Advanced materials.

[17]  S. Selberherr,et al.  Two-pulse sub-ns switching scheme for advanced spin-orbit torque MRAM , 2019, Solid-State Electronics.

[18]  G. Go,et al.  Switching of Perpendicular Magnetization via ac Spin-Orbit Torque , 2018, Physical Review Applied.

[19]  Kyung-Jin Lee,et al.  Emerging Three-Terminal Magnetic Memory Devices , 2016, Proceedings of the IEEE.

[20]  Hyunsoo Yang,et al.  Recent advances in spin-orbit torques: Moving towards device applications , 2018, Applied Physics Reviews.

[21]  R. Guo,et al.  Free field electric switching of perpendicularly magnetized thin film by spin current gradient. , 2019, ACS applied materials & interfaces.

[22]  A. Fert,et al.  Field-free switching of a perpendicular magnetic tunnel junction through the interplay of spin–orbit and spin-transfer torques , 2018, Nature Electronics.

[23]  B. Koopmans,et al.  Field-free magnetization reversal by spin-Hall effect and exchange bias , 2015, Nature Communications.

[24]  X. F. Han,et al.  Electrical control over perpendicular magnetization switching driven by spin-orbit torques , 2016 .

[25]  Plamen Stamenov,et al.  Spin-orbit torque switching without an external field using interlayer exchange coupling. , 2016, Nature nanotechnology.

[26]  William Legrand,et al.  Coherent Subnanosecond Switching of Perpendicular Magnetization by the Fieldlike Spin-Orbit Torque without an External Magnetic Field , 2015 .

[27]  J. Bokor,et al.  Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy , 2014, Proceedings of the National Academy of Sciences.

[28]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[29]  Xiaoping Zhou,et al.  Field-Free Deterministic Magnetization Switching with Ultralow Current Density in Epitaxial Au/Fe4N Bilayer Films. , 2019, ACS applied materials & interfaces.

[30]  Kevin Garello,et al.  Spin-orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction , 2013, 1310.8235.

[31]  H. Meng,et al.  Reconfigurable spin orbit logic device using asymmetric Dzyaloshinskii–Moriya interaction , 2020 .

[32]  Junjie Li,et al.  In-memory direct processing based on nanoscale perpendicular magnetic tunnel junctions. , 2018, Nanoscale.

[33]  S. Selberherr,et al.  Robust magnetic field-free switching of a perpendicularly magnetized free layer for SOT-MRAM , 2020 .

[34]  Liang Chang,et al.  Progresses and challenges of spin orbit torque driven magnetization switching and application (Invited) , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[35]  H. Ohno,et al.  A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. , 2016, Nature nanotechnology.

[36]  X. Wang,et al.  Chirality-Reversible Multistate Switching via Two Orthogonal Spin-Orbit Torques in a Perpendicularly Magnetized System , 2020 .

[37]  Baoshun Zhang,et al.  Electric-Field Control of Spin-Orbit Torques in WS2/Permalloy Bilayers. , 2018, ACS applied materials & interfaces.

[38]  Nan Zhang,et al.  Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. , 2016, Nature materials.

[39]  Jianping Wang,et al.  Deterministic field-free switching of a perpendicularly magnetized ferromagnetic layer via the joint effects of the Dzyaloshinskii–Moriya interaction and damping- and field-like spin–orbit torques: an appraisal , 2019, Journal of Physics D: Applied Physics.

[40]  Sarjoosing Goolaup,et al.  Field-free spin-orbit torque switching of a perpendicular ferromagnet with Dzyaloshinskii-Moriya interaction , 2019, Applied Physics Letters.

[41]  H. Ohno,et al.  Current-induced torques in magnetic materials. , 2012, Nature materials.

[42]  Weisheng Zhao,et al.  Theoretical Conditions for Field-Free Magnetization Switching Induced by Spin-Orbit Torque and Dzyaloshinskii–Moriya Interaction , 2020, IEEE Electron Device Letters.

[43]  Mohamad Towfik Krounbi,et al.  Basic principles of STT-MRAM cell operation in memory arrays , 2013 .

[44]  H. Ohno,et al.  Spintronics based random access memory: a review , 2017 .

[45]  Kang L. Wang,et al.  Current-induced spin-orbit torque switching of perpendicularly magnetized Hf|CoFeB|MgO and Hf|CoFeB|TaOx structures , 2015 .

[46]  Yang Liu,et al.  Field-Free Spin-Orbit Torque Switching from Geometrical Domain-Wall Pinning. , 2018, Nano letters.

[47]  B. Diény,et al.  Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. , 2007, Physical review letters.

[48]  Zhaohao Wang,et al.  Design of an erasable spintronics memory based on current-path-dependent field-free spin orbit torque , 2020 .

[49]  H. Yuan,et al.  Breaking the Current Density Threshold in Spin-orbit-torque Magnetic Random Access Memory , 2018, 1802.02415.

[50]  Stéphane Auffret,et al.  Spin-orbit torque magnetization switching controlled by geometry. , 2016, Nature nanotechnology.

[51]  Xuanyao Fong,et al.  Electric-field-induced three-terminal pMTJ switching in the absence of an external magnetic field , 2018, Applied Physics Letters.

[52]  Y. Sheng,et al.  Adjustable Current‐Induced Magnetization Switching Utilizing Interlayer Exchange Coupling , 2018, Advanced Electronic Materials.

[53]  Eby G. Friedman,et al.  All-Spin-Orbit Switching of Perpendicular Magnetization , 2016, IEEE Transactions on Electron Devices.

[54]  Zhaohao Wang,et al.  Field-free spin–orbit-torque switching of perpendicular magnetization aided by uniaxial shape anisotropy , 2019, Nanotechnology.

[55]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.