Change Detection Using Directional Statistics

This paper addresses the task of change detection from noisy multivariate time-series data. One major feature of our approach is to leverage directional statistics as the noise-robust signature of time-series data. To capture major patterns, we introduce a regularized maximum likelihood equation for the von Mises-Fisher distribution, which simultaneously learns directional statistics and sample weights to filter out unwanted samples contaminated by the noise. We show that the optimization problem is reduced to the trust region subproblem in a certain limit, where global optimality is guaranteed. To evaluate the amount of changes, we introduce a novel distance measure on the Stiefel manifold. The method is validated with real-world data from an ore mining system.

[1]  Suvrit Sra,et al.  A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of Is(x) , 2012, Comput. Stat..

[2]  R. Steele Optimization , 2005 .

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  Hiroshi Sawada,et al.  Change-Point Detection with Feature Selection in High-Dimensional Time-Series Data , 2013, IJCAI.

[5]  Masashi Sugiyama,et al.  Change-Point Detection in Time-Series Data by Direct Density-Ratio Estimation , 2009, SDM.

[6]  Le Thi Hoai An,et al.  A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..

[7]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[8]  Gene H. Golub,et al.  Methods for modifying matrix factorizations , 1972, Milestones in Matrix Computation.

[9]  Klaus-Robert Müller,et al.  Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis , 2011, IEEE Transactions on Neural Networks and Learning Systems.

[10]  Gabriele B. Durrant,et al.  Journal of the Royal Statistical Society Series A (Statistics in Society). Special Issue on Paradata , 2013 .

[11]  Jonathan H. Manton,et al.  On Filtering with Observation in a Manifold: Reduction to a Classical Filtering Problem , 2013, SIAM J. Control. Optim..

[12]  William W. Hager,et al.  Minimizing a Quadratic Over a Sphere , 2001, SIAM J. Optim..

[13]  Hisashi Kashima,et al.  Eigenspace-based anomaly detection in computer systems , 2004, KDD.

[14]  Ludmila I. Kuncheva,et al.  Change Detection in Streaming Multivariate Data Using Likelihood Detectors , 2013, IEEE Transactions on Knowledge and Data Engineering.

[15]  Philip S. Yu,et al.  Optimal multi-scale patterns in time series streams , 2006, SIGMOD Conference.

[16]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[17]  Rynson W. H. Lau,et al.  Knowledge and Data Engineering for e-Learning Special Issue of IEEE Transactions on Knowledge and Data Engineering , 2008 .

[18]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[19]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[20]  Yin Zhang,et al.  A Fast Algorithm for Sparse Reconstruction Based on Shrinkage, Subspace Optimization, and Continuation , 2010, SIAM J. Sci. Comput..

[21]  Philippe L. Toint,et al.  A multilevel algorithm for solving the trust-region subproblem , 2009, Optim. Methods Softw..

[22]  W. Gander,et al.  A D.C. OPTIMIZATION ALGORITHM FOR SOLVING THE TRUST-REGION SUBPROBLEM∗ , 1998 .

[23]  Arjun K. Gupta,et al.  Parametric Statistical Change Point Analysis , 2000 .

[24]  Nigel Collier,et al.  Change-Point Detection in Time-Series Data by Relative Density-Ratio Estimation , 2012, Neural Networks.

[25]  Danny C. Sorensen,et al.  Minimization of a Large-Scale Quadratic FunctionSubject to a Spherical Constraint , 1997, SIAM J. Optim..