Scale-dependent gravitational waves from a rolling axion

We consider a model in which a pseudo-scalar field $\sigma$ rolls for some e-folds during inflation, sourcing one helicity of a gauge field. These fields are only gravitationally coupled to the inflaton, and therefore produce scalar and tensor primordial perturbations only through gravitational interactions. These sourced signals are localized on modes that exit the horizon while the roll of $\sigma$ is significant. We focus our study on cases in which the model can simultaneously produce (i) a large gravitational wave signal, resulting in observable B-modes of the CMB polarizations, and (ii) sufficiently small scalar perturbations, so to be in agreement with the current limits from temperature anisotropies. Different choice of parameters can instead lead to a localized and visible departure from gaussianity in the scalar sector, either at CMB or LSS scales.

[1]  G. W. Pratt,et al.  Planck 2015 results - XVII. Constraints on primordial non-Gaussianity , 2014 .

[2]  S. Patil,et al.  The effective Planck mass and the scale of inflation , 2014, The European physical journal. C, Particles and fields.

[3]  J. García-Bellido,et al.  Gravitational waves from Abelian gauge fields and cosmic strings at preheating , 2010, 1006.0217.

[4]  Bharat Ratra,et al.  Cosmological 'seed' magnetic field from inflation , 1991 .

[5]  H. Kodama,et al.  Parity violation in graviton non-gaussianity , 2011, 1106.3228.

[6]  Maresuke Shiraishi,et al.  CMB Bispectrum from Primordial Scalar, Vector and Tensor Non-Gaussianities , 2010, 1012.1079.

[7]  S. Saito,et al.  Probing polarization states of primordial gravitational waves with cosmic microwave background anisotropies , 2007, 0705.3701.

[8]  Benjamin D. Wandelt,et al.  Fast Estimator of Primordial Non-Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background. II. Partial Sky Coverage and Inhomogeneous Noise , 2008 .

[9]  Ø. Grøn Warm Inflation , 2016 .

[10]  N-flationary magnetic fields , 2006, astro-ph/0606534.

[11]  L. Sorbo Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton , 2011, 1101.1525.

[12]  R. W. Ogburn,et al.  Joint Analysis of BICEP2/Keck Array and Planck Data , 2015, 1502.00612.

[13]  J. García-Bellido,et al.  Stochastic background of gravitational waves from hybrid preheating. , 2006, Physical review letters.

[14]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[15]  Matias Zaldarriaga,et al.  Primordial bispectrum information from CMB polarization , 2004 .

[16]  Fast Estimator of Primordial Non-Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background , 2007, astro-ph/0701921.

[17]  M. Peloso,et al.  Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound , 2012, 1212.5184.

[18]  M. Peloso,et al.  Gravitational waves and scalar perturbations from spectator fields , 2014, 1411.3029.

[19]  Tuukka Meriniemi,et al.  Stochastic background of gravitational waves from fermions — Theory and applications , 2013, Journal of High Energy Physics.

[20]  Leptogenesis and tensor polarisation from a gravitational Chern-Simons term , 2005, hep-th/0501153.

[21]  A. Berera,et al.  Warm inflation model building , 2009, 0902.0521.

[22]  Yunsong Piao,et al.  Oscillating modulation to B-mode polarization from varying propagating speed of primordial gravitational waves , 2015, 1501.06345.

[23]  P. Adshead,et al.  Perturbations in Chromo-Natural Inflation , 2013, 1305.2930.

[24]  K. Sinha,et al.  How well can we really determine the scale of inflation , 2014, 1410.0016.

[25]  M. Satoh Slow-roll Inflation with the Gauss-Bonnet and Chern-Simons Corrections , 2010, 1008.2724.

[26]  M. Fasiello,et al.  Enhancing Inflationary Tensor Modes through Spectator Fields , 2013, 1305.7241.

[27]  A. Ferté,et al.  Detecting chiral gravity with the pure pseudospectrum reconstruction of the cosmic microwave background polarized anisotropies , 2014, 1404.6660.

[28]  Vera Gluscevic,et al.  Testing Parity-Violating Mechanisms with Cosmic Microwave Background Experiments , 2010, 1002.1308.

[29]  J. Dufaux Gravity waves from the nonperturbative decay of condensates along supersymmetric flat directions. , 2009, Physical review letters.

[30]  W. Fischler,et al.  Vector field instability and the primordial tensor spectrum , 2015, 1505.04686.

[31]  M. Shiraishi Polarization bispectrum for measuring primordial magnetic fields , 2013, 1308.2531.

[32]  Richard Easther,et al.  Stochastic gravitational wave production after inflation , 2006, astro-ph/0601617.

[33]  L. Sorbo,et al.  Particle production during inflation and gravitational waves detectable by ground-based interferometers , 2011, 1109.0022.

[34]  I. Tkachev,et al.  Relic gravitational waves produced after preheating , 1997 .

[35]  Marc Kamionkowski,et al.  Cosmological signature of new parity violating interactions , 1999 .

[36]  E. Merzbacher,et al.  Quantum Mechanics, 3rd Edition , 1997 .

[37]  D. Wands,et al.  Generalised tensor fluctuations and inflation , 2014, 1409.6568.

[38]  M. Zaldarriaga,et al.  Gravitational waves and the scale of inflation , 2014, 1412.0665.

[39]  A. G. Vieregg,et al.  Neutrino Physics from the Cosmic Microwave Background and Large-Scale Structure , 2013, 1309.5383.

[40]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[41]  Probing Planckian physics : resonant production of particles during inflation and features in the primordial power spectrum , 1999, hep-ph/9910437.

[42]  L. Sorbo,et al.  An inflationary model with small scalar and large tensor nongaussianities , 2013, 1307.7077.

[43]  M. Shiraishi,et al.  Parity Violation of Gravitons in the CMB Bispectrum , 2011, 1108.0175.

[44]  Gary Shiu,et al.  Gravity waves and non-Gaussian features from particle production in a sector gravitationally coupled to the inflaton , 2012, 1206.6117.

[45]  Parity violation in the CMB bispectrum by a rolling pseudoscalar , 2013, 1308.6769.

[46]  G. Tasinato,et al.  Breaking discrete symmetries in the effective field theory of inflation , 2015, 1505.05773.

[47]  Ryo Namba,et al.  Gauge-flation confronted with Planck , 2013, 1308.1366.

[48]  M. Porrati,et al.  Effective Planck mass and the scale of inflation , 2015, 1508.01527.

[49]  Ippei Obata,et al.  Chromo-Natural Inflation in the Axiverse , 2014, 1412.7620.

[50]  Keitaro Takahashi,et al.  Analytic formulae of the CMB bispectra generated from non-Gaussianity in the tensor and vector perturbations , 2010, 1003.2096.

[51]  T. Souradeep,et al.  Odd-parity cosmic microwave background bispectrum , 2011 .

[52]  L. Kofman,et al.  Gravity waves from tachyonic preheating after hybrid inflation , 2008, 0812.2917.

[53]  Marco Peloso,et al.  Large non-gaussianity in axion inflation. , 2010, Physical review letters.

[54]  M. Shiraishi Parity violation of primordial magnetic fields in the CMB bispectrum , 2012, 1202.2847.

[55]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[56]  M. Peloso,et al.  Blue tensor spectrum from particle production during inflation , 2014, 1405.0346.

[57]  Andrei Linde,et al.  Gauge field production in supergravity inflation: Local non-Gaussianity and primordial black holes , 2012, 1212.1693.

[58]  M. Liguori,et al.  Observed parity-odd CMB temperature bispectrum , 2014, 1409.0265.

[59]  C. Caprini,et al.  Adding helicity to inflationary magnetogenesis , 2014, 1407.2809.

[60]  E. Pajer,et al.  Observational Constraints on Gauge Field Production in Axion Inflation , 2012, 1203.6076.

[61]  Rapid field excursions and the inflationary tensor spectrum , 2012, 1209.3848.

[62]  Kiwoon Choi,et al.  Primordial perturbations from dilaton-induced gauge fields , 2015, 1507.04977.

[63]  M. Sloth,et al.  Universal constraints on axions from inflation , 2014, 1409.5799.

[64]  A. Riotto Inflation and the theory of cosmological perturbations , 2002, hep-ph/0210162.

[65]  J. Yokoyama,et al.  Can a spectator scalar field enhance inflationary tensor mode , 2014, 1411.3658.

[66]  Gary N. Felder,et al.  Theory and numerics of gravitational waves from preheating after inflation , 2007, 0707.0875.

[67]  J. Maldacena,et al.  On graviton non-gaussianities during inflation , 2011, 1104.2846.

[68]  David H. Lyth,et al.  What Would We Learn by Detecting a Gravitational Wave Signal in the Cosmic Microwave Background Anisotropy , 1997 .

[69]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[70]  M. Zaldarriaga,et al.  New sources of gravitational waves during inflation , 2011, 1109.0542.

[71]  General parity-odd CMB bispectrum estimation , 2014, 1403.4222.

[72]  M. Peloso,et al.  Phenomenology of a pseudo-scalar inflaton: naturally large nongaussianity , 2011, 1102.4333.

[73]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[74]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.