A fuzzy relative of the k-medoids algorithm with application to web document and snippet clustering

This paper presents new algorithms (fuzzy e-methods (FCMdd) and fuzzy c trimmed medoids (FCTMdd)) for fuzzy clustering of relational data. The objective functions are based on selecting c representative objects (medoids) from the data set in such a way that the total dissimilarity within each cluster is minimized. A comparison of FCMdd with the relational fuzzy c-means algorithm shows that FCMdd is much faster. We present examples of applications of these algorithms to web document and snippet clustering.

[1]  E. Diday Une nouvelle méthode en classification automatique et reconnaissance des formes la méthode des nuées dynamiques , 1971 .

[2]  Rajesh N. Davé,et al.  Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..

[3]  Enrique H. Ruspini,et al.  Numerical methods for fuzzy clustering , 1970, Inf. Sci..

[4]  King-Sun Fu,et al.  Syntactic Pattern Recognition And Applications , 1968 .

[5]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[6]  Arun N. Swami,et al.  Clustering Data Without Distance Functions , 1998, IEEE Data Eng. Bull..

[7]  S. Sen,et al.  Clustering of relational data containing noise and outliers , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[8]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[9]  Mohamed A. Ismail,et al.  Fuzzy clustering for symbolic data , 1998, IEEE Trans. Fuzzy Syst..

[10]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[11]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[12]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[13]  R.J. Hathaway,et al.  Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..

[14]  Donald H. Kraft,et al.  An Integrated Approach to Information Retrieval with Fuzzy Clustering and Fuzzy Inferencing , 2000 .

[15]  Narendra Ahuja,et al.  Location- and Density-Based Hierarchical Clustering Using Similarity Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  M. P. Windham Numerical classification of proximity data with assignment measures , 1985 .

[17]  Jongwoo Kim,et al.  Application of the least trimmed squares technique to prototype-based clustering , 1996, Pattern Recognit. Lett..

[18]  R. Sokal,et al.  Numerical Taxonomy: The Principles and Practice of Numerical Classification. , 1975 .

[19]  James C. Bezdek,et al.  Relational duals of the c-means clustering algorithms , 1989, Pattern Recognit..

[20]  James C. Bezdek,et al.  Nerf c-means: Non-Euclidean relational fuzzy clustering , 1994, Pattern Recognit..

[21]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[22]  K. Chidananda Gowda,et al.  Symbolic clustering using a new similarity measure , 1992, IEEE Trans. Syst. Man Cybern..

[23]  M. Roubens Pattern classification problems and fuzzy sets , 1978 .

[24]  Wendy R. Fox,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1991 .

[25]  Oren Etzioni,et al.  Web document clustering: a feasibility demonstration , 1998, SIGIR '98.

[26]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .