Probabilistically induced domain decomposition methods for elliptic boundary-value problems
暂无分享,去创建一个
[1] Yaohang Li,et al. A Quasi-Monte Carlo Method for Elliptic Boundary Value Problems , 2001, Monte Carlo Methods Appl..
[2] D. Hunter. Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .
[3] Piero Lanucara,et al. Domain Decomposition Solution of Elliptic Boundary-Value Problems via Monte Carlo and Quasi-Monte Carlo Methods , 2005, SIAM J. Sci. Comput..
[4] T. Chan,et al. Domain decomposition algorithms , 1994, Acta Numerica.
[5] R. Caflisch,et al. Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .
[6] William H. Press,et al. In: Numerical Recipes in Fortran 90 , 1996 .
[7] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[8] Grant Lythe,et al. Efficient Numerical Solution of Stochastic Differential Equations Using Exponential Timestepping , 2000 .
[9] Shigeyoshi Ogawa,et al. A quasi-random walk method for one-dimensional reaction-diffusion equations , 2003, Math. Comput. Simul..
[10] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[11] Al Geist. Progress towards Petascale Virtual Machines , 2003, PVM/MPI.
[12] Grant D. Lythe,et al. Exponential Timestepping with Boundary Test for Stochastic Differential Equations , 2003, SIAM J. Sci. Comput..
[13] R. Spigler,et al. Fast simulations of stochastic dynamical systems , 2005 .
[14] E. Platen. An introduction to numerical methods for stochastic differential equations , 1999, Acta Numerica.
[15] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[16] M. Freidlin. Functional Integration And Partial Differential Equations , 1985 .
[17] D. Williams. STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .
[18] R. Caflisch,et al. Quasi-Monte Carlo integration , 1995 .
[19] Christian Lécot,et al. Simulation of diffusion using quasi-random walk methods , 1998 .
[20] William J. Morokoff. Generating Quasi-Random Paths for Stochastic Processes , 1998, SIAM Rev..
[21] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[22] Karl K. Sabelfeld. Monte Carlo Methods , 1991 .
[23] Russel E. Caflisch,et al. A quasi-Monte Carlo approach to particle simulation of the heat equation , 1993 .
[24] Karl K. Sabelfeld. Monte Carlo Methods in Boundary Value Problems. , 1991 .
[25] Desmond J. Higham,et al. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..
[26] Parallel Wiener Integral Methods for Elliptic Boundary Value Problems: a Tale of Two Architectures , 1995 .
[27] Denis Talay,et al. Probabilistic numerical methods for partial differential equations: Elements of analysis , 1996 .
[28] F. M. Buchmann. Simulation of stopped diffusions , 2005 .
[29] Russel E. Caflisch,et al. Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..
[30] F. M. Buchmann. Computing exit times with the Euler scheme , 2003 .
[31] Greg Astfalk. Applications on Advanced Architecture Computers , 1996, Software, environments, tools.
[32] P. Kloeden,et al. Numerical Solution of Stochastic Differential Equations , 1992 .
[33] Peter Mathé,et al. On quasi-Monte Carlo simulation of stochastic differential equations , 1997, Math. Comput..
[34] Faysal El Khettabi,et al. Quasi-Monte Carlo Simulation of Diffusion , 1999, J. Complex..
[35] E. Gobet. Weak approximation of killed diffusion using Euler schemes , 2000 .
[36] Christian Lécot,et al. A quasi-Monte Carlo method for the Boltzmann equation , 1991 .