Probabilistically induced domain decomposition methods for elliptic boundary-value problems

Monte Carlo as well as quasi-Monte Carlo methods are used to generate only few interfacial values in two-dimensional domains where boundary-value elliptic problems are formulated. This allows for a domain decomposition of the domain. A continuous approximation of the solution is obtained interpolating on such interfaces, and then used as boundary data to split the original problem into fully decoupled subproblems. The numerical treatment can then be continued, implementing any deterministic algorithm on each subdomain. Both, Monte Carlo (or quasi-Monte Carlo) simulations and the domain decomposition strategy allow for exploiting parallel architectures. Scalability and natural fault tolerance are peculiarities of the present algorithm. Examples concern Helmholtz and Poisson equations, whose probabilistic treatment presents additional complications with respect to the case of homogeneous elliptic problems without any potential term and source.

[1]  Yaohang Li,et al.  A Quasi-Monte Carlo Method for Elliptic Boundary Value Problems , 2001, Monte Carlo Methods Appl..

[2]  D. Hunter Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension , 2000 .

[3]  Piero Lanucara,et al.  Domain Decomposition Solution of Elliptic Boundary-Value Problems via Monte Carlo and Quasi-Monte Carlo Methods , 2005, SIAM J. Sci. Comput..

[4]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[5]  R. Caflisch,et al.  Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .

[6]  William H. Press,et al.  In: Numerical Recipes in Fortran 90 , 1996 .

[7]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[8]  Grant Lythe,et al.  Efficient Numerical Solution of Stochastic Differential Equations Using Exponential Timestepping , 2000 .

[9]  Shigeyoshi Ogawa,et al.  A quasi-random walk method for one-dimensional reaction-diffusion equations , 2003, Math. Comput. Simul..

[10]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[11]  Al Geist Progress towards Petascale Virtual Machines , 2003, PVM/MPI.

[12]  Grant D. Lythe,et al.  Exponential Timestepping with Boundary Test for Stochastic Differential Equations , 2003, SIAM J. Sci. Comput..

[13]  R. Spigler,et al.  Fast simulations of stochastic dynamical systems , 2005 .

[14]  E. Platen An introduction to numerical methods for stochastic differential equations , 1999, Acta Numerica.

[15]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[16]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[17]  D. Williams STOCHASTIC DIFFERENTIAL EQUATIONS: THEORY AND APPLICATIONS , 1976 .

[18]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[19]  Christian Lécot,et al.  Simulation of diffusion using quasi-random walk methods , 1998 .

[20]  William J. Morokoff Generating Quasi-Random Paths for Stochastic Processes , 1998, SIAM Rev..

[21]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[22]  Karl K. Sabelfeld Monte Carlo Methods , 1991 .

[23]  Russel E. Caflisch,et al.  A quasi-Monte Carlo approach to particle simulation of the heat equation , 1993 .

[24]  Karl K. Sabelfeld Monte Carlo Methods in Boundary Value Problems. , 1991 .

[25]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[26]  Parallel Wiener Integral Methods for Elliptic Boundary Value Problems: a Tale of Two Architectures , 1995 .

[27]  Denis Talay,et al.  Probabilistic numerical methods for partial differential equations: Elements of analysis , 1996 .

[28]  F. M. Buchmann Simulation of stopped diffusions , 2005 .

[29]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[30]  F. M. Buchmann Computing exit times with the Euler scheme , 2003 .

[31]  Greg Astfalk Applications on Advanced Architecture Computers , 1996, Software, environments, tools.

[32]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[33]  Peter Mathé,et al.  On quasi-Monte Carlo simulation of stochastic differential equations , 1997, Math. Comput..

[34]  Faysal El Khettabi,et al.  Quasi-Monte Carlo Simulation of Diffusion , 1999, J. Complex..

[35]  E. Gobet Weak approximation of killed diffusion using Euler schemes , 2000 .

[36]  Christian Lécot,et al.  A quasi-Monte Carlo method for the Boltzmann equation , 1991 .