Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules

This paper exhibits a novel application of the coyote optimization algorithm (COA) in order to extract the nine unknown parameters of the three-diode photovoltaic (PV) model of PV modules. The main target of this study is to obtain a very highly precise PV model, which can be efficiently applied to represent the PV system in the simulation of dynamic power systems. The optimization problem is formulated to take into consideration the root mean squared current error between the calculated model current and the experimental current of the PV module. The COA is applied to minimize this fitness function. In this study, the COA-PV model is validated by the numerical results which are performed at different environmental conditions such as temperature and irradiation variation conditions. Moreover, its effectiveness is executed by making a comparison between its numerical and experimental results for some commercial PV modules in the market like the KC200GT and MSX-60 modules. With the adoption of the COA, a highly precise three-diode PV model can be established. This represents a novel contribution to the field of PV systems and its modeling.

[1]  Teuku Meurah Indra Mahlia,et al.  Characterization of PV panel and global optimization of its model parameters using genetic algorithm , 2013 .

[2]  Hany M. Hasanien,et al.  Identification of the Photovoltaic Model Parameters Using the Crow Search Algorithm , 2009 .

[3]  Hany M. Hasanien,et al.  An Adaptive Control Strategy for Low Voltage Ride Through Capability Enhancement of Grid-Connected Photovoltaic Power Plants , 2016, IEEE Transactions on Power Systems.

[4]  N. Rajasekar,et al.  Parameter extraction of two diode solar PV model using Fireworks algorithm , 2016 .

[5]  Gang Yao,et al.  Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm , 2018, Solar Energy.

[6]  Ahmed Fathy,et al.  Parameter estimation of photovoltaic system using imperialist competitive algorithm , 2017 .

[7]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[8]  Weidong Xiao,et al.  A novel modeling method for photovoltaic cells , 2004, 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551).

[9]  Mohammad Reza Azizian,et al.  On the Parameter Extraction of a Five-Parameter Double-Diode Model of Photovoltaic Cells and Modules , 2014, IEEE Journal of Photovoltaics.

[10]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[11]  Kay-Soon Low,et al.  Photovoltaic Model Identification Using Particle Swarm Optimization With Inverse Barrier Constraint , 2012, IEEE Transactions on Power Electronics.

[12]  N. Rajasekar,et al.  Bacterial Foraging Algorithm based solar PV parameter estimation , 2013 .

[13]  Alireza Maheri,et al.  An accurate method for the PV model identification based on a genetic algorithm and the interior-point method , 2014 .

[14]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[15]  Dinesh C. S. Bisht,et al.  A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm , 2015 .

[16]  Leandro dos Santos Coelho,et al.  Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[17]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[18]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[19]  Hany M. Hasanien,et al.  Shuffled Frog Leaping Algorithm for Photovoltaic Model Identification , 2015, IEEE Transactions on Sustainable Energy.

[20]  Lijun Wu,et al.  Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm , 2018, Applied Energy.

[21]  Hany M. Hasanien,et al.  Parameters estimation of single‐ and multiple‐diode photovoltaic model using whale optimisation algorithm , 2018, IET Renewable Power Generation.

[22]  Rabeh Abbassi,et al.  An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models , 2019, Energy Conversion and Management.

[23]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[24]  Hany M. Hasanien,et al.  Optimisation of controller parameters for grid-tied photovoltaic system at faulty network using artificial neural network-based cuckoo search algorithm , 2017 .

[25]  Attia A. El-Fergany,et al.  Parameter extraction of photovoltaic generating units using multi-verse optimizer , 2016 .

[26]  Hany M. Hasanien,et al.  Performance improvement of photovoltaic power systems using an optimal control strategy based on whale optimization algorithm , 2018 .

[27]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[28]  Ahmed Al-Durra,et al.  RTDS implementation of an improved sliding mode based inverter controller for PV system. , 2016, ISA transactions.

[29]  Hany M. Hasanien,et al.  Identification of electrical parameters for three-diode photovoltaic model using analytical and sunflower optimization algorithm , 2019, Applied Energy.