Nanomechanical mapping of soft matter by bimodal force microscopy

[1]  Ricardo Garcia,et al.  Three-dimensional quantitative force maps in liquid with 10 piconewton, angstrom and sub-minute resolutions. , 2013, Nanoscale.

[2]  E. Meyer,et al.  Measuring electric field induced subpicometer displacement of step edge ions. , 2012, Physical review letters.

[3]  Ricardo Garcia,et al.  Repulsive bimodal atomic force microscopy on polymers , 2012, Beilstein journal of nanotechnology.

[4]  Ricardo Garcia,et al.  Molecular and nanoscale compositional contrast of soft matter in liquid: interplay between elastic and dissipative interactions. , 2012, ACS nano.

[5]  Ricardo Garcia,et al.  The emergence of multifrequency force microscopy. , 2012, Nature nanotechnology.

[6]  Ricardo Garcia,et al.  Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus , 2012, Beilstein journal of nanotechnology.

[7]  R. Proksch,et al.  Loss tangent imaging: Theory and simulations of repulsive-mode tapping atomic force microscopy , 2012 .

[8]  J. Font,et al.  How localized are energy dissipation processes in nanoscale interactions? , 2011, Nanotechnology.

[9]  Santiago D. Solares,et al.  Mapping of conservative and dissipative interactions in bimodal atomic force microscopy using open-loop and phase-locked-loop control of the higher eigenmode , 2011 .

[10]  Chanmin Su,et al.  Mechanical mapping of single membrane proteins at submolecular resolution. , 2011, Nano letters.

[11]  F. Biscarini,et al.  Morphological and mechanical properties of alkanethiol Self-Assembled Monolayers investigated via BiModal Atomic Force Microscopy. , 2011, Chemical communications.

[12]  Andrew J. Dick,et al.  Utilizing Off-Resonance and Dual-Frequency Excitation to Distinguish Attractive and Repulsive Surface Forces in Atomic Force Microscopy , 2011 .

[13]  J. Gómez‐Herrero,et al.  Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. , 2011, Physical review letters.

[14]  Christian Dietz,et al.  Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid , 2011, Nanotechnology.

[15]  Jennifer Y. Kelly,et al.  Quantitative subsurface contact resonance force microscopy of model polymer nanocomposites , 2011, Nanotechnology.

[16]  Wei Zhang,et al.  Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. , 2011, Physical review letters.

[17]  Abdullah Atalar,et al.  Force spectroscopy using bimodal frequency modulation atomic force microscopy , 2011 .

[18]  C. Riesch,et al.  Subsurface imaging of soft polymeric materials with nanoscale resolution. , 2011, ACS nano.

[19]  A. Shluger,et al.  Recent Trends in Surface Characterization and Chemistry with High‐Resolution Scanning Force Methods , 2011, Advanced materials.

[20]  N. Thomson,et al.  Energy dissipation in a dynamic nanoscale contact , 2011 .

[21]  Santiago D. Solares,et al.  Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy , 2010 .

[22]  Y. Sugawara,et al.  Simultaneous observation of surface topography and elasticity at atomic scale by multifrequency frequency modulation atomic force microscopya) , 2010 .

[23]  S. Solares,et al.  Triple-frequency intermittent contact atomic force microscopy characterization: Simultaneous topographical, phase, and frequency shift contrast in ambient air , 2010 .

[24]  Robert W. Stark,et al.  Bistability, higher harmonics, and chaos in AFM , 2010 .

[25]  Francesco Stellacci,et al.  Direct mapping of the solid-liquid adhesion energy with subnanometre resolution. , 2010, Nature nanotechnology.

[26]  Ricardo Garcia,et al.  Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM. , 2010, Ultramicroscopy.

[27]  E. Meyer,et al.  Ultrasensitive detection of lateral atomic-scale interactions on graphite (0001) via bimodal dynamic force measurements , 2010 .

[28]  Ernst Meyer,et al.  Systematic achievement of improved atomic-scale contrast via bimodal dynamic force microscopy. , 2009, Physical review letters.

[29]  S. Glotzer,et al.  The effect of nanometre-scale structure on interfacial energy. , 2009, Nature materials.

[30]  K. Matsushige,et al.  Molecular Resolution Imaging of Protein Molecules in Liquid Using Frequency Modulation Atomic Force Microscopy , 2009 .

[31]  J. Hobbs,et al.  How atomic force microscopy has contributed to our understanding of polymer crystallization , 2009 .

[32]  A. Raman,et al.  Origins of phase contrast in the atomic force microscope in liquids , 2009, Proceedings of the National Academy of Sciences.

[33]  M. Dong,et al.  Determination of protein structural flexibility by microsecond force spectroscopy. , 2009, Nature nanotechnology.

[34]  Jianbin Xu,et al.  Improving lateral resolution of electrostatic force microscopy by multifrequency method under ambient conditions , 2009 .

[35]  R. Proksch,et al.  Bimodal magnetic force microscopy: Separation of short and long range forces , 2009 .

[36]  Yang Gan,et al.  Atomic and subnanometer resolution in ambient conditions by atomic force microscopy , 2009 .

[37]  R. Stark Dynamics of repulsive dual-frequency atomic force microscopy , 2009 .

[38]  Ricardo Garcia,et al.  Theory of phase spectroscopy in bimodal atomic force microscopy , 2009 .

[39]  T. Sulzbach,et al.  Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids , 2008, Nanotechnology.

[40]  Daniel Platz,et al.  Intermodulation atomic force microscopy , 2008 .

[41]  R. Stark,et al.  Nanotomography with enhanced resolution using bimodal atomic force microscopy , 2008 .

[42]  A. Dana,et al.  Nanoscale charging hysteresis measurement by multifrequency electrostatic force spectroscopy , 2008 .

[43]  Ricardo Garcia,et al.  Theory of multifrequency atomic force microscopy. , 2008, Physical review letters.

[44]  Arvind Raman,et al.  Cantilever dynamics in atomic force microscopy , 2008 .

[45]  R. Wiesendanger,et al.  Magnetic sensitive force microscopy , 2008 .

[46]  Ricardo Garcia,et al.  Force microscopy imaging of individual protein molecules with sub‐pico Newton force sensitivity , 2007, Journal of molecular recognition : JMR.

[47]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[48]  Olav Solgaard,et al.  An atomic force microscope tip designed to measure time-varying nanomechanical forces , 2007, Nature Nanotechnology.

[49]  Ricardo Garcia,et al.  Nanoscale compositional mapping with gentle forces. , 2007, Nature materials.

[50]  Andreas Stemmer,et al.  Multifrequency electrostatic force microscopy in the repulsive regime , 2007 .

[51]  R. Garcia,et al.  Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes , 2006 .

[52]  Roger Proksch,et al.  Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy , 2006 .

[53]  Ricardo Garcia,et al.  Identification of nanoscale dissipation processes by dynamic atomic force microscopy. , 2006, Physical review letters.

[54]  Ricardo Garcia,et al.  Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy , 2006, Nanotechnology.

[55]  John E. Sader,et al.  Quantitative force measurements using frequency modulation atomic force microscopy—theoretical foundations , 2005 .

[56]  Ricardo Garcia,et al.  Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever , 2004 .

[57]  J. Wang,et al.  Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution. , 2003, Journal of molecular biology.

[58]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[59]  Ricardo Garcia,et al.  Tip-surface forces, amplitude, and energy dissipation in amplitude-modulation (tapping mode) force microscopy , 2001 .

[60]  G. Zaccai,et al.  How soft is a protein? A protein dynamics force constant measured by neutron scattering. , 2000, Science.

[61]  Franz J. Giessibl,et al.  Forces and frequency shifts in atomic-resolution dynamic-force microscopy , 1997 .

[62]  Gus Gurley,et al.  Short cantilevers for atomic force microscopy , 1996 .

[63]  G. Vancso,et al.  What’s New in Atomic Force Microscopy of Polymers? An Update , 2009 .

[64]  J. Wang,et al.  STRUCTURAL BASIS FOR GROEL-ASSISTED PROTEIN FOLDING FROM THE CRYSTAL STRUCTURE OF (GROEL-KMGATP) 14 AT 2.0 ANGSTROM RESOLUTION , 2003 .

[65]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.