System Description: GAPT 2.0

GAPT General Architecture for Proof Theory is a proof theory framework containing data structures, algorithms, parsers and other components common in proof theory and automated deduction. In contrast to automated and interactive theorem provers whose focus is the construction of proofs, GAPT concentrates on the transformation and further processing of proofs. In this paper, we describe the current 2.0 release of GAPT.

[1]  Tomer Libal,et al.  Understanding Resolution Proofs through Herbrand's Theorem , 2013, TABLEAUX.

[2]  Koen Claessen,et al.  Using the TPTP Language for Writing Derivations and Finite Interpretations , 2006, IJCAR.

[3]  Geoff Sutcliffe,et al.  The state of CASC , 2006, AI Commun..

[4]  Dale Miller PROOFCERT – Broad Spectrum Proof Certificates – ERC , 2017 .

[5]  Stefan Hetzl Project Presentation: Algorithmic Structuring and Compression of Proofs (ASCOP) , 2012, AISC/MKM/Calculemus.

[6]  Dale A. Miller,et al.  A compact representation of proofs , 1987, Stud Logica.

[7]  Alexander Leitsch,et al.  Algorithmic introduction of quantified cuts , 2014, Theor. Comput. Sci..

[8]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[9]  Alexander Leitsch,et al.  Cut-elimination and Redundancy-elimination by Resolution , 2000, J. Symb. Comput..

[10]  Geoff Sutcliffe,et al.  The TPTP World - Infrastructure for Automated Reasoning , 2010, LPAR.

[11]  J. Stasko,et al.  Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[12]  Alexander Leitsch,et al.  CERES: An analysis of Fürstenberg's proof of the infinity of primes , 2008, Theoretical Computer Science.

[13]  Joe Hurd,et al.  The OpenTheory Standard Theory Library , 2011, NASA Formal Methods.

[14]  Alexander Leitsch,et al.  Towards Algorithmic Cut-Introduction , 2012, LPAR.

[15]  Alexander Leitsch,et al.  CERES in higher-order logic , 2011, Ann. Pure Appl. Log..

[16]  Tomer Libal,et al.  Advanced Proof Viewing in ProofTool , 2014, UITP.

[17]  Alexander Leitsch,et al.  Introducing Quantified Cuts in Logic with Equality , 2014, IJCAR.

[18]  Giselle Reis,et al.  Importing SMT and Connection proofs as expansion trees , 2015, PxTP@CADE.

[19]  Alexander Leitsch,et al.  PROOFTOOL: a GUI for the GAPT Framework , 2012, UITP.

[20]  Stefan Hetzl,et al.  Inductive theorem proving based on tree grammars , 2015, Ann. Pure Appl. Log..

[21]  Olivier Hermant,et al.  The λΠ-calculus Modulo as a Universal Proof Language , 2012, PxTP.