Chromatin remodellers Brg1 and Bptf are required for normal gene expression and progression of oncogenic Braf-driven mouse melanoma

[1]  K. Flaherty,et al.  Toward Minimal Residual Disease-Directed Therapy in Melanoma , 2018, Cell.

[2]  T. Graeber,et al.  Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress. , 2018, Cancer cell.

[3]  G. Berx,et al.  Mouse Cutaneous Melanoma Induced by Mutant BRaf Arises from Expansion and Dedifferentiation of Mature Pigmented Melanocytes. , 2017, Cell stem cell.

[4]  Hannah E Seberg,et al.  Beyond MITF: Multiple transcription factors directly regulate the cellular phenotype in melanocytes and melanoma , 2017, Pigment cell & melanoma research.

[5]  Janet Iwasa,et al.  Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes , 2017, Nature Reviews Molecular Cell Biology.

[6]  E. Schadt,et al.  Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation. , 2017, JCI insight.

[7]  Jonathan M. Cairns,et al.  Dynamic Rewiring of Promoter-Anchored Chromatin Loops during Adipocyte Differentiation. , 2017, Molecular cell.

[8]  D. Watkins-Chow,et al.  BRG1 interacts with SOX10 to establish the melanocyte lineage and to promote differentiation , 2017, Nucleic acids research.

[9]  Satyaki Sengupta,et al.  Super-Enhancer-Driven Transcriptional Dependencies in Cancer. , 2017, Trends in cancer.

[10]  T. Braun,et al.  TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo , 2017, PLoS genetics.

[11]  G. Natoli,et al.  In Vivo Genetic Screens of Patient-Derived Tumors Revealed Unexpected Frailty of the Transformed Phenotype. , 2016, Cancer discovery.

[12]  M. Bosenberg,et al.  DNMT3b Modulates Melanoma Growth by Controlling Levels of mTORC2 Component RICTOR. , 2016, Cell reports.

[13]  J. Landsberg,et al.  MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment , 2015, Nature Communications.

[14]  D. Gautheret,et al.  New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis , 2015, Cell reports.

[15]  A. McCallion,et al.  Genomic analysis reveals distinct mechanisms and functional classes of SOX10-regulated genes in melanocytes. , 2015, Human molecular genetics.

[16]  L. Larue,et al.  Chromatin-Remodelling Complex NURF Is Essential for Differentiation of Adult Melanocyte Stem Cells , 2015, PLoS genetics.

[17]  Steven J. M. Jones,et al.  Genomic Classification of Cutaneous Melanoma , 2015, Cell.

[18]  S. Aerts,et al.  Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state , 2015, Nature Communications.

[19]  S. Aerts,et al.  Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells , 2015, eLife.

[20]  C. Néri,et al.  Neuronal identity genes regulated by super-enhancers are preferentially down-regulated in the striatum of Huntington's disease mice. , 2015, Human molecular genetics.

[21]  L. Soroceanu,et al.  The Role of BPTF in Melanoma Progression and in Response to BRAF-Targeted Therapy , 2015, Journal of the National Cancer Institute.

[22]  J. Lieb,et al.  What are super-enhancers? , 2014, Nature Genetics.

[23]  M. McMahon,et al.  Differential AKT dependency displayed by mouse models of BRAFV600E-initiated melanoma. , 2013, The Journal of clinical investigation.

[24]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[25]  H. Kluger,et al.  Genetic inactivation or pharmacological inhibition of Pdk1 delays development and inhibits metastasis of BrafV600E::Pten−/− melanoma , 2013, Oncogene.

[26]  W. Pavan,et al.  A Dual Role for SOX10 in the Maintenance of the Postnatal Melanocyte Lineage and the Differentiation of Melanocyte Stem Cell Progenitors , 2013, PLoS genetics.

[27]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[28]  J. Landsberg,et al.  Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation , 2012, Nature.

[29]  M. Wegner,et al.  Chromatin-remodeling factor Brg1 is required for Schwann cell differentiation and myelination. , 2012, Developmental cell.

[30]  D. Rimm,et al.  β-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. , 2011, Cancer cell.

[31]  F. Rambow,et al.  General strategy to analyse melanoma in mice , 2011, Pigment cell & melanoma research.

[32]  C. Bertolotto,et al.  Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma , 2011, Oncogene.

[33]  A. Singer,et al.  Chromatin remodeling complex NURF regulates thymocyte maturation. , 2011, Genes & development.

[34]  Tao Ye,et al.  seqMINER: an integrated ChIP-seq data interpretation platform , 2010, Nucleic acids research.

[35]  M. Martinka,et al.  BRG1 expression is increased in human cutaneous melanoma , 2010, The British journal of dermatology.

[36]  N. Dhomen,et al.  Inducible expression of V600EBraf using tyrosinase‐driven Cre recombinase results in embryonic lethality , 2010, Pigment cell & melanoma research.

[37]  H. Qi,et al.  Heterogeneous SWI/SNF Chromatin Remodeling Complexes Promote Expression of Microphthalmia —Associated Transcription Factor Target Genes in Melanoma , 2009, Oncogene.

[38]  J. Reis-Filho,et al.  Oncogenic Braf induces melanocyte senescence and melanoma in mice. , 2009, Cancer cell.

[39]  R. DePinho,et al.  BRafV600E cooperates with Pten silencing to elicit metastatic melanoma , 2009, Nature Genetics.

[40]  P. Nuciforo,et al.  Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. , 2008, Cancer research.

[41]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[42]  Y. Ohkawa,et al.  The Microphthalmia-associated Transcription Factor Requires SWI/SNF Enzymes to Activate Melanocyte-specific Genes* , 2006, Journal of Biological Chemistry.

[43]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[44]  L. Larue,et al.  Spatiotemporal gene control by the Cre‐ERT2 system in melanocytes , 2006, Genesis.

[45]  P. Chambon,et al.  Temporally controlled targeted somatic mutagenesis in embryonic surface ectoderm and fetal epidermal keratinocytes unveils two distinct developmental functions of BRG1 in limb morphogenesis and skin barrier formation , 2005, Development.

[46]  T. Sasaki,et al.  T cell-specific loss of Pten leads to defects in central and peripheral tolerance. , 2001, Immunity.