Organized Plasmonic Clusters with High Coordination Number and Extraordinary Enhancement in Surface-Enhanced Raman Scattering (SERS)

Noble metal nanoparticles exhibit optical excitations known as surface plasmons that produce large enhancement of the local light intensity under external illumination, particularly when the nanoparticles are arranged in closely spaced configurations.1 The interparticle gap distance2 plays a critical role in the generation of hotspots with high electromagnetic fields, and thus such assembled nanoparticles find application to ultrasensitive detection, for example through surface-enhanced Raman scattering3 (SERS) and nonlinear optics, among other feats.4 Controlled assembly using colloidal chemistry is an emerging and promising field for high-yield production of metal nanoparticle clusters with small interparticle gaps.5 However, most of the reported methods rely on the use of nucleic acids or other organic molecules as linking elements,6 which yield long separation distances and thus weak plasmon coupling. Additionally, only simple clusters, such as dimers and trimers, have been efficiently synthesized. Herein, we report the controlled assembly of gold nanospheres into well-defined nanoparticle clusters with large coordination numbers (up to 7) and high symmetry. We further demonstrate ultrasensitive direct and indirect SERS sensing, thus corroborating the outstanding optical performance of these clusters with robust enhancement factors that are over three orders of magnitude higher than those of single particles.

[1]  Luis M Liz-Marzán,et al.  Traps and cages for universal SERS detection. , 2012, Chemical Society reviews.

[2]  Hye-Young Park,et al.  Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles , 2007 .

[3]  R. Jin Nanoparticle clusters light up in SERS. , 2010, Angewandte Chemie.

[4]  L. Liz‐Marzán,et al.  Spectroscopy and high-resolution microscopy of single nanocrystals by a focused ion beam registration method. , 2007, Angewandte Chemie.

[5]  A. Agarwal,et al.  Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions , 2011, Proceedings of the National Academy of Sciences.

[6]  M. Brenner,et al.  The Free-Energy Landscape of Clusters of Attractive Hard Spheres , 2010, Science.

[7]  Colin J. Loweth,et al.  DNA ALS GERUST ZUR BILDUNG VON AGGREGATEN AUS GOLD-NANOKRISTALLEN , 1999 .

[8]  Chad A. Mirkin,et al.  Nanoparticle Superlattice Engineering with DNA , 2011, Science.

[9]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[10]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[11]  M. Çulha,et al.  Pluronic block copolymer-mediated interactions of organic compounds with noble metal nanoparticles for SERS analysis. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[12]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[13]  Luis M Liz-Marzán,et al.  Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. , 2009, Angewandte Chemie.

[14]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[15]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[16]  H. Duan,et al.  Self-Assembled Plasmonic Dimers of Amphiphilic Gold Nanocrystals , 2011 .

[17]  Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. , 2010, Angewandte Chemie.

[18]  Daniel Brandl,et al.  Plasmonic nanoclusters: a path towards negative-index metafluids. , 2007, Optics express.

[19]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[20]  J. Shumaker-Parry,et al.  Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach. , 2007, Journal of the American Chemical Society.

[21]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[22]  Gary B. Braun,et al.  Generalized Approach to SERS-Active Nanomaterials via Controlled Nanoparticle Linking, Polymer Encapsulation, and Small-Molecule Infusion , 2009 .

[23]  Rongchao Jin Nanopartikelcluster: SERS im Rampenlicht† , 2010 .

[24]  Luis M Liz-Marzán,et al.  Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[25]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[26]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[27]  D. Bergman,et al.  Self-similar chain of metal nanospheres as efficient nanolens , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[28]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[29]  Carsten Sönnichsen,et al.  Separation of nanoparticles by gel electrophoresis according to size and shape. , 2007, Nano letters.

[30]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[31]  S. Schlücker,et al.  Gold Nanoparticles: Fast and Cost‐Effective Purification of Gold Nanoparticles in the 20–250 nm Size Range by Continuous Density Gradient Centrifugation (Small 17/2011) , 2011 .

[32]  Stella M. Marinakos,et al.  Assembly of Phenylacetylene‐Bridged Gold Nanocluster Dimers and Trimers , 1999 .

[33]  L. Liz‐Marzán,et al.  Controlled assembly of plasmonic colloidal nanoparticle clusters. , 2011, Nanoscale.

[34]  R. Swathi,et al.  Ag@SiO2 Core-Shell Nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation. , 2012, The journal of physical chemistry letters.

[35]  Younan Xia,et al.  Formkontrolle bei der Synthese von Metallnanokristallen: einfache Chemie, komplexe Physik? , 2009 .

[36]  D. Frenkel,et al.  Re-entrant melting as a design principle for DNA-coated colloids. , 2012, Nature materials.

[37]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[38]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[39]  A Paul Alivisatos,et al.  DNA-Based Assembly of Gold Nanocrystals. , 1999, Angewandte Chemie.

[40]  F. G. D. Abajo,et al.  RELATIVISTIC ELECTRON ENERGY LOSS AND ELECTRON-INDUCED PHOTON EMISSION IN INHOMOGENEOUS DIELECTRICS , 1998 .

[41]  F. G. D. Abajo,et al.  MULTIPLE SCATTERING OF RADIATION IN CLUSTERS OF DIELECTRICS , 1999 .

[42]  S. Schlücker,et al.  Fast and cost-effective purification of gold nanoparticles in the 20-250 nm size range by continuous density gradient centrifugation. , 2011, Small.

[43]  G. White,et al.  Fractionation of Surface-Modified Gold Nanorods Using Gas-Expanded Liquids , 2012 .

[44]  Jwa-Min Nam,et al.  Directional synthesis and assembly of bimetallic nanosnowmen with DNA. , 2012, Journal of the American Chemical Society.

[45]  Vinothan N Manoharan,et al.  Dense Packing and Symmetry in Small Clusters of Microspheres , 2003, Science.