Multivariate Extreme Value Methods

Multivariate extremes occur in several hydrologic and water resources problems. Despite their practical relevance, the real-life decision making as well as the number of designs based on an explicit treatment of multivariate variables is yet limited as compared to univariate analysis. A first problem arising when working in a multidimensional context is the lack of a “natural” definition of extreme values: essentially, this is due to the fact that different concepts of multivariate order and failure regions are possible. Also, in modeling multivariate extremes, central is the issue of dependence between the variables involved: again, several approaches are possible. A further practical problem is represented by the construction of multivariate Extreme Value models suitable for applications: the task is indeed difficult from a mathematical point of view. In addition, the calculation of multivariate Return Periods, quantiles, and design events, which represent quantities of utmost interest in applications, is rather tricky. In this Chapter we show how the use of Copulas may help in dealing with (and, possibly, solving) these problems.

[1]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[2]  C. Michele,et al.  Estimating strategies for multiparameter Multivariate Extreme Value copulas , 2010 .

[3]  Rolf-Dieter Reiss,et al.  On Pickands coordinates in arbitrary dimensions , 2005 .

[4]  I. Olkin,et al.  A Multivariate Exponential Distribution , 1967 .

[5]  N. Tajvidi,et al.  Multivariate Generalized Pareto Distributions , 2006 .

[6]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[7]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[8]  Niko E. C. Verhoest,et al.  A stochastic design rainfall generator based on copulas and mass curves , 2010 .

[9]  M. E. Johnson,et al.  Multivariate Statistical Simulation , 1988 .

[10]  Christian Genest,et al.  “Understanding Relationships Using Copulas,” by Edward Frees and Emiliano Valdez, January 1998 , 1998 .

[11]  Giuseppe Passoni,et al.  A multivariate model of sea storms using copulas , 2007 .

[12]  Markus Junker,et al.  Estimating the tail-dependence coefficient: Properties and pitfalls , 2005 .

[13]  Roger B. Nelsen,et al.  Nonparametric measures of multivariate association , 1996 .

[14]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[15]  W. Kruskal Ordinal Measures of Association , 1958 .

[16]  Richard W. Katz,et al.  Statistics of extremes in climate change , 2010 .

[17]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[18]  C. Genest,et al.  Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .

[19]  Sheng Yue,et al.  The Gumbel logistic model for representing a multivariate storm event , 2000 .

[20]  B. Bobée,et al.  Multivariate hydrological frequency analysis using copulas , 2004 .

[21]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[22]  Jonathan R. M. Hosking,et al.  The effect of intersite dependence on regional flood frequency analysis , 1988 .

[23]  Fabrizio Durante,et al.  Copula Theory and Its Applications , 2010 .

[24]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[25]  Computing the Volume of n-Dimensional Copulas , 2009 .

[26]  A. W. Kemp,et al.  Continuous Bivariate Distributions, Emphasising Applications , 1991 .

[27]  Friedrich Schmid,et al.  Multivariate Extensions of Spearman's Rho and Related Statistics , 2007 .

[28]  Vijay P. Singh,et al.  Hydrologic Frequency Modeling , 1987 .

[29]  Jun Yan,et al.  FAST LARGE-SAMPLE GOODNESS-OF-FIT TESTS FOR COPULAS , 2011 .

[30]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[31]  Lan Zhang Multivariate hydrological frequency analysis and risk mapping , 2005 .

[32]  M. Denuit,et al.  Dependence Structures and Limiting Results: with Applications in Finance and Insurance , 2008 .

[33]  R. Nelsen,et al.  On the relationship between Spearman's rho and Kendall's tau for pairs of continuous random variables , 2007 .

[34]  Anne-Catherine Favre,et al.  Importance of Tail Dependence in Bivariate Frequency Analysis , 2007 .

[35]  Mark E. Johnson Multivariate Statistical Simulation: Johnson/Multivariate , 1987 .

[36]  Vijay P. Singh,et al.  Risk and reliability analysis , 2007 .

[37]  Gabriel Frahm On the extremal dependence coefficient of multivariate distributions , 2006 .

[38]  J. Valdes,et al.  Nonparametric Approach for Estimating Return Periods of Droughts in Arid Regions , 2003 .

[39]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[40]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[41]  Gianfausto Salvadori,et al.  Frequency analysis via copulas: Theoretical aspects and applications to hydrological events , 2004 .

[42]  Friedrich Schmid,et al.  Nonparametric inference on multivariate versions of Blomqvist’s beta and related measures of tail dependence , 2007 .

[43]  Jan-Frederik Mai,et al.  Bivariate extreme-value copulas with discrete Pickands dependence measure , 2011 .

[44]  Bruno Rémillard,et al.  On Kendall's Process , 1996 .

[45]  N. T. Kottegoda,et al.  Two-component log-normal distribution of irrigation-affected low flows , 1994 .

[46]  C. De Michele,et al.  Multivariate multiparameter extreme value models and return periods: A copula approach , 2010 .

[47]  William H. Press,et al.  Numerical recipes in C , 2002 .

[48]  Jonathan A. Tawn,et al.  Statistical Methods for Multivariate Extremes: An Application to Structural Design , 1994 .

[49]  Tom M. L. Wigley,et al.  The effect of changing climate on the frequency of absolute extreme events , 2009 .

[50]  Fabrizio Durante,et al.  On a family of multivariate copulas for aggregation processes , 2007, Inf. Sci..

[51]  J. Q. Smith Decision Analysis: A Bayesian Approach , 1988 .

[52]  S. Resnick,et al.  Limit theory for multivariate sample extremes , 1977 .

[53]  B. Schweizer,et al.  On Nonparametric Measures of Dependence for Random Variables , 1981 .

[54]  Roman Krzysztofowicz,et al.  Generic probability distribution of rainfall in space: the bivariate model , 2005 .

[55]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[56]  Gianfranco Becciu,et al.  Bivariate exponential model applied to intensities and durations of extreme rainfall , 1994 .

[57]  Francesco Serinaldi,et al.  Asymmetric copula in multivariate flood frequency analysis , 2006 .

[58]  Harry Joe,et al.  Parametric families of multivariate distributions with given margins , 1993 .

[59]  H. Joe Multivariate extreme‐value distributions with applications to environmental data , 1994 .

[60]  Robert J. Beaver,et al.  An Introduction to Probability Theory and Mathematical Statistics , 1977 .

[61]  Johan Segers,et al.  Extreme-value copulas , 2009, 0911.1015.

[62]  Caroline Keef,et al.  Spatial dependence in extreme river flows and precipitation for Great Britain. , 2009 .

[63]  José Juan Quesada-Molina,et al.  Kendall distribution functions , 2003 .

[64]  Bruno Rémillard,et al.  Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation , 2006 .

[65]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[66]  Daniel Berg Copula goodness-of-fit testing: an overview and power comparison , 2009 .

[67]  T. Ouarda,et al.  Multivariate extreme value identification using depth functions , 2011 .

[68]  F. Durante Construction of non-exchangeable bivariate distribution functions , 2009 .

[69]  J. Stedinger Estimating a regional flood frequency distribution , 1983 .

[70]  Fabrizio Durante,et al.  On the return period and design in a multivariate framework , 2011 .

[71]  T. Ouarda,et al.  Index flood–based multivariate regional frequency analysis , 2009 .

[72]  Fabrizio Durante,et al.  On the construction of multivariate extreme value models via copulas , 2009 .

[73]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[74]  Kilani Ghoudi,et al.  Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles , 1998 .

[75]  E. Jaynes Probability theory : the logic of science , 2003 .

[76]  Christian Genest,et al.  On the multivariate probability integral transformation , 2001 .

[77]  Masaaki Sibuya,et al.  Bivariate extreme statistics, I , 1960 .

[78]  Renzo Rosso,et al.  Bivariate Statistical Approach to Check Adequacy of Dam Spillway , 2005 .

[79]  Robert Serfling,et al.  Quantile functions for multivariate analysis: approaches and applications , 2002 .

[80]  J. Segers,et al.  RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS , 2007, 0707.4098.

[81]  Renzo Rosso,et al.  Extremes in Nature , 2007 .

[82]  Félix Belzunce,et al.  Quantile curves and dependence structure for bivariate distributions , 2007, Comput. Stat. Data Anal..

[83]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[84]  Gianfausto Salvadori,et al.  Bivariate return periods via 2-Copulas , 2004 .

[85]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[86]  H. Joe Multivariate models and dependence concepts , 1998 .

[87]  Fateh Chebana,et al.  Multivariate quantiles in hydrological frequency analysis , 2011 .

[88]  W. Grenney,et al.  Suspended Sediment—River Flow Analysis , 1985 .

[89]  José Juan Quesada-Molina,et al.  Distribution functions of copulas: a class of bivariate probability integral transforms , 2001 .

[90]  R. Nelsen An Introduction to Copulas , 1998 .

[91]  J. Tawn Modelling multivariate extreme value distributions , 1990 .

[92]  B. Efron,et al.  Bootstrap confidence intervals , 1996 .

[93]  Eckhard Liebscher,et al.  Construction of asymmetric multivariate copulas , 2008 .

[94]  Roger B. Nelsen,et al.  Dependence and Order in Families of Archimedean Copulas , 1997 .

[95]  Daniel Cooley,et al.  Extreme value analysis and the study of climate change , 2009 .

[96]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[97]  Friedrich Schmid,et al.  Multivariate conditional versions of Spearman's rho and related measures of tail dependence , 2007 .

[98]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[99]  D. Wilks Multisite generalization of a daily stochastic precipitation generation model , 1998 .

[100]  C. Genest,et al.  A characterization of gumbel's family of extreme value distributions , 1989 .

[101]  Nils Blomqvist,et al.  On a Measure of Dependence Between two Random Variables , 1950 .

[102]  F. Alabert,et al.  Non-Gaussian data expansion in the Earth Sciences , 1989 .

[103]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[104]  I. Olkin,et al.  Domains of Attraction of Multivariate Extreme Value Distributions , 1983 .

[105]  Marco Scarsini,et al.  On measures of concordance , 1984 .

[106]  D. Russo On Probability Distribution of Hydraulic Conductivity in Variably Saturated Bimodal Heterogeneous Formations , 2009 .

[107]  A. Juri,et al.  Copula convergence theorems for tail events , 2002 .