TMPRSS6 as a Therapeutic Target for Disorders of Erythropoiesis and Iron Homeostasis

[1]  P. Buehler,et al.  The oral ferroportin inhibitor vamifeport improves hemodynamics in a mouse model of sickle cell disease , 2022, Blood.

[2]  S. Rivella,et al.  Tmprss6-ASO as a tool for the treatment of Polycythemia Vera mice , 2021, PloS one.

[3]  M. Cappellini,et al.  Luspatercept for β-thalassemia: beyond red blood cell transfusions , 2021, Expert opinion on biological therapy.

[4]  M. Cappellini,et al.  Oral ferroportin inhibitor vamifeport for improving iron homeostasis and erythropoiesis in β-thalassemia: current evidence and future clinical development , 2021, Expert review of hematology.

[5]  T. Rouault,et al.  Mechanisms of cellular iron sensing, regulation of erythropoiesis and mitochondrial iron utilization. , 2021, Seminars in hematology.

[6]  Allison L. Fisher,et al.  Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions , 2021, Developmental dynamics : an official publication of the American Association of Anatomists.

[7]  Andrew D. Johnson,et al.  Whole-genome sequencing association analysis of quantitative red blood cell phenotypes: The NHLBI TOPMed program. , 2021, American journal of human genetics.

[8]  P. Brissot,et al.  Iron and platelets: A subtle, under‐recognized relationship , 2021, American journal of hematology.

[9]  V. Haase Hypoxia-inducible factor-prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. , 2021, Kidney international supplements.

[10]  J. Truksa,et al.  Matriptase-2 and Hemojuvelin in Hepcidin Regulation: In Vivo Immunoblot Studies in Mask Mice , 2021, International journal of molecular sciences.

[11]  William J. Astle,et al.  A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis , 2021, Communications Biology.

[12]  Shuling Guo,et al.  Safety, Pharmacokinetic, and Pharmacodynamic Evaluation of a 2′-(2-Methoxyethyl)-D-ribose Antisense Oligonucleotide–Triantenarry N-Acetyl-galactosamine Conjugate that Targets the Human Transmembrane Protease Serine 6 , 2021, The Journal of Pharmacology and Experimental Therapeutics.

[13]  Jodie L Babitt,et al.  Physiological and pathophysiological mechanisms of hepcidin regulation: clinical implications for iron disorders , 2020, British journal of haematology.

[14]  S. Thein,et al.  Dietary Iron Restriction Improves Markers of Disease Severity in Murine Sickle Cell Anemia. , 2020, Blood.

[15]  S. Rivella,et al.  Revisiting The NTDT vs TDT Classification 10 Years Later. , 2020, American journal of hematology.

[16]  S. Rivella,et al.  Correcting β-thalassemia by combined therapies that restrict iron and modulate erythropoietin activity. , 2020, Blood.

[17]  C. Enns,et al.  The Ectodomain of Matriptase-2 Plays an Important Non-Proteolytic Role in Suppressing Hepcidin Expression in Mice. , 2020, Blood.

[18]  G. Bourne,et al.  Regulation of Iron Homeostasis By PTG-300 Improves Disease Parameters in Mouse Models for Beta-Thalassemia and Hereditary Hemochromatosis , 2019, Blood.

[19]  S. Rivella,et al.  Lobe specificity of iron-binding to transferrin modulates murine erythropoiesis and iron homeostasis. , 2019, Blood.

[20]  K. Kowdley,et al.  ACG Clinical Guideline: Hereditary Hemochromatosis , 2019, The American journal of gastroenterology.

[21]  T. Ganz Erythropoietic regulators of iron metabolism. , 2019, Free radical biology & medicine.

[22]  S. Rivella Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia. , 2019, Blood.

[23]  M. Fleming,et al.  Low Iron Promotes Megakaryocytic Commitment of Megakaryocytic-Erythroid Progenitors in Humans and Mice. , 2018, Blood.

[24]  S. Taylor,et al.  Erythroferrone inhibits the induction of hepcidin by BMP6. , 2018, Blood.

[25]  T. Ganz,et al.  Dysregulated iron metabolism in polycythemia vera: etiology and consequences , 2018, Leukemia.

[26]  R. Mesa,et al.  Patient-Reported Outcomes Data From REVEAL at the Time of Enrollment (Baseline): A Prospective Observational Study of Patients With Polycythemia Vera in the United States , 2018, Clinical lymphoma, myeloma & leukemia.

[27]  J. Lipton,et al.  Erythropoiesis: insights into pathophysiology and treatments in 2017 , 2018, Molecular Medicine.

[28]  Yukio Nakamura,et al.  Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor , 2018, The Journal of experimental medicine.

[29]  S. Verstovsek,et al.  Markers of iron deficiency in patients with polycythemia vera receiving ruxolitinib or best available therapy. , 2017, Leukemia research.

[30]  S. Rivella,et al.  Minihepcidin peptides as disease modifiers in mice affected by β-thalassemia and polycythemia vera. , 2016, Blood.

[31]  Mario Cazzola,et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. , 2016, Blood.

[32]  Herbert Y. Lin,et al.  Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin-mediated hepcidin suppression in mice. , 2016, Blood.

[33]  S. Rivella,et al.  Combination of Tmprss6- ASO and the iron chelator deferiprone improves erythropoiesis and reduces iron overload in a mouse model of beta-thalassemia intermedia , 2016, Haematologica.

[34]  T. Ganz,et al.  Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia. , 2015, Blood.

[35]  S. Rivella β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies , 2015, Haematologica.

[36]  M. Lidonnici,et al.  The second transferrin receptor regulates red blood cell production in mice. , 2015, Blood.

[37]  K. Finberg,et al.  Iron-refractory iron deficiency anemia (IRIDA). , 2014, Hematology/oncology clinics of North America.

[38]  S. Rivella,et al.  IDENTIFICATION OF ERYTHROFERRONE AS AN ERYTHROID REGULATOR OF IRON METABOLISM , 2014, Nature Genetics.

[39]  A. Grinberg,et al.  Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis , 2014, Nature Medicine.

[40]  S. Rivella,et al.  Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia , 2013, Proceedings of the National Academy of Sciences.

[41]  S. Milstein,et al.  An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe(-/-) mice and ameliorates anemia and iron overload in murine β-thalassemia intermedia. , 2013, Blood.

[42]  S. Rivella,et al.  Decreased hepcidin expression in murine β-thalassemia is associated with suppression of Bmp/Smad signaling. , 2012, Blood.

[43]  C. Peyssonnaux,et al.  Deletion of HIF-2α in the enterocytes decreases the severity of tissue iron loading in hepcidin knockout mice. , 2012, Blood.

[44]  F. Gonzalez,et al.  Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. , 2011, Gastroenterology.

[45]  H. Tsukamoto,et al.  Suppression of hepatic hepcidin expression in response to acute iron deprivation is associated with an increase of matriptase-2 protein. , 2011, Blood.

[46]  N. Andrews,et al.  Tmprss6 is a genetic modifier of the Hfe-hemochromatosis phenotype in mice. , 2009, Blood.

[47]  C. Lacombe,et al.  Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. , 2010, Blood.

[48]  J. Macdonald,et al.  Iron control of erythroid development by a novel aconitase-associated regulatory pathway. , 2010, Blood.

[49]  Michael G. Kharas,et al.  Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells. , 2010, Cancer cell.

[50]  D. Gale,et al.  Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin , 2010, Haematologica.

[51]  Gonçalo Abecasis,et al.  Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels , 2009, Nature Genetics.

[52]  Ian H. Frazer,et al.  Common variants in TMPRSS6 are associated with iron status and erythrocyte volume , 2009, Nature Genetics.

[53]  F. Gonzalez,et al.  Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. , 2009, Cell metabolism.

[54]  Jerry Kaplan,et al.  The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. , 2008, Cell metabolism.

[55]  B. Beutler,et al.  The Serine Protease TMPRSS6 Is Required to Sense Iron Deficiency , 2008, Science.

[56]  N. Andrews,et al.  Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA) , 2008, Nature Genetics.

[57]  Jane-Jane Chen Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. , 2007, Blood.

[58]  Yi Fang Liu,et al.  Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. , 2006, Blood.

[59]  T. Ganz,et al.  Suppression of hepcidin during anemia requires erythropoietic activity. , 2006, Blood.

[60]  T. Townes,et al.  Knockout-transgenic mouse model of sickle cell disease. , 1997, Science.

[61]  O. Castro,et al.  Improvement of sickle cell anemia by iron‐limited erythropoiesis , 1994, American journal of hematology.

[62]  N. Gray,et al.  Identification of a novel iron‐responsive element in murine and human erythroid delta‐aminolevulinic acid synthase mRNA. , 1991, The EMBO journal.

[63]  J. Adamson,et al.  Hematopoiesis in the rat: Quantitation of hematopoietic progenitors and the response to iron deficiency anemia , 1986, Journal of cellular physiology.

[64]  G. Honig,et al.  Iron deficiency and sickle cell anemia. , 1983, Archives of internal medicine.

[65]  J. Hofrichter,et al.  Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. , 1974, Proceedings of the National Academy of Sciences of the United States of America.